IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p6120-d1536968.html
   My bibliography  Save this article

Matching Electricity Footprint of Commercial Customers to Industry-Specific Profiles for Enhanced Power Management

Author

Listed:
  • Tomasz Zabkowski

    (Institute of Information Technology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-787 Warsaw, Poland)

  • Krzysztof Gajowniczek

    (Institute of Information Technology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-787 Warsaw, Poland)

  • Jacek Brożyna

    (Department of Quantitative Methods, The Faculty of Management, Rzeszow University of Technology, Aleja Powstańców Warszawy 10/S, 35-959 Rzeszow, Poland)

  • Grzegorz Matejko

    (Polskie Towarzystwo Cyfrowe, Krakowskie Przedmieście 57/4, 20-076 Lublin, Poland)

Abstract

This paper presents a method for assigning the electricity consumption profiles of 10,129 commercial customers in Poland to specific industry profiles. The customer consumption data were compared with eight industry profiles for which the business activities were known. Additionally, a clustering analysis was conducted to identify homogeneous groups among the customers. The aim of this research was to develop a simple yet reliable approach for matching electricity usage patterns with specific profiles while relating them to the overall profile of the Polish power system. This offers valuable insights into how commercial customers utilize electricity and their actual contributions to the system’s peak load, which can further contribute to more efficient energy management and production planning within the Polish power system. Furthermore, the clustering analysis provides a new understanding of consumption patterns, allowing for better predictions of peak load behavior and more refined energy management strategies across sectors.

Suggested Citation

  • Tomasz Zabkowski & Krzysztof Gajowniczek & Jacek Brożyna & Grzegorz Matejko, 2024. "Matching Electricity Footprint of Commercial Customers to Industry-Specific Profiles for Enhanced Power Management," Energies, MDPI, vol. 17(23), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6120-:d:1536968
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/6120/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/6120/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fang, Tingting & Lahdelma, Risto, 2016. "Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system," Applied Energy, Elsevier, vol. 179(C), pages 544-552.
    2. Faruqui, Ahmad & Hledik, Ryan & Newell, Sam & Pfeifenberger, Hannes, 2007. "The Power of 5 Percent," The Electricity Journal, Elsevier, vol. 20(8), pages 68-77, October.
    3. Tomasz Ząbkowski & Krzysztof Gajowniczek & Grzegorz Matejko & Jacek Brożyna & Grzegorz Mentel & Małgorzata Charytanowicz & Jolanta Jarnicka & Anna Olwert & Weronika Radziszewska & Jörg Verstraete, 2023. "Cluster-Based Approach to Estimate Demand in the Polish Power System Using Commercial Customers’ Data," Energies, MDPI, vol. 16(24), pages 1-21, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    2. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    3. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    4. Jim Lewis & Kerrie Mengersen & Laurie Buys & Desley Vine & John Bell & Peter Morris & Gerard Ledwich, 2015. "Systems Modelling of the Socio-Technical Aspects of Residential Electricity Use and Network Peak Demand," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-21, July.
    5. Magnus Dahl & Adam Brun & Oliver S. Kirsebom & Gorm B. Andresen, 2018. "Improving Short-Term Heat Load Forecasts with Calendar and Holiday Data," Energies, MDPI, vol. 11(7), pages 1-16, June.
    6. Shahrouz Abolhosseini & Almas Heshmati & Jorn Altmann, 2014. "The Effect of Renewable Energy Development on Carbon Emission Reduction: An Empirical Analysis for the EU-15 Countries," TEMEP Discussion Papers 2014109, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Mar 2014.
    7. Xue, Puning & Zhou, Zhigang & Fang, Xiumu & Chen, Xin & Liu, Lin & Liu, Yaowen & Liu, Jing, 2017. "Fault detection and operation optimization in district heating substations based on data mining techniques," Applied Energy, Elsevier, vol. 205(C), pages 926-940.
    8. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    9. Gong, Mingju & Zhao, Yin & Sun, Jiawang & Han, Cuitian & Sun, Guannan & Yan, Bo, 2022. "Load forecasting of district heating system based on Informer," Energy, Elsevier, vol. 253(C).
    10. Kiguchi, Y. & Weeks, M. & Arakawa, R., 2021. "Predicting winners and losers under time-of-use tariffs using smart meter data," Energy, Elsevier, vol. 236(C).
    11. Clastres, Cédric & Khalfallah, Haikel, 2021. "Dynamic pricing efficiency with strategic retailers and consumers: An analytical analysis of short-term market interactions," Energy Economics, Elsevier, vol. 98(C).
    12. Zhao, Yin & Gong, Mingju & Sun, Jiawang & Han, Cuitian & Jing, Lei & Li, Bo & Zhao, Zhixuan, 2023. "A new hybrid optimization prediction strategy based on SH-Informer for district heating system," Energy, Elsevier, vol. 282(C).
    13. Wang, Lei & Wang, Xinyu & Zhao, Zhongchao, 2024. "Mid-term electricity demand forecasting using improved multi-mode reconstruction and particle swarm-enhanced support vector regression," Energy, Elsevier, vol. 304(C).
    14. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    15. Cédric Clastres & Haikel Khalfallah, 2014. "An analytical approach for elasticity of demand activation with demand response mechanisms," Working Papers halshs-01019679, HAL.
    16. Lumbreras, Mikel & Garay-Martinez, Roberto & Arregi, Beñat & Martin-Escudero, Koldobika & Diarce, Gonzalo & Raud, Margus & Hagu, Indrek, 2022. "Data driven model for heat load prediction in buildings connected to District Heating by using smart heat meters," Energy, Elsevier, vol. 239(PD).
    17. Andrew J. Satchwell & Peter A. Cappers & Jeff Deason & Sydney P. Forrester & Natalie Mims Frick & Brian F. Gerke & Mary Ann Piette, 2020. "A Conceptual Framework to Describe Energy Efficiency and Demand Response Interactions," Energies, MDPI, vol. 13(17), pages 1-14, August.
    18. Buryk, Stephen & Mead, Doug & Mourato, Susana & Torriti, Jacopo, 2015. "Investigating preferences for dynamic electricity tariffs: The effect of environmental and system benefit disclosure," Energy Policy, Elsevier, vol. 80(C), pages 190-195.
    19. Huang, Ke & Yuan, Jianjuan & Zhou, Zhihua & Zheng, Xuejing, 2022. "Analysis and evaluation of heat source data of large-scale heating system based on descriptive data mining techniques," Energy, Elsevier, vol. 251(C).
    20. Eltoukhy, Abdelrahman E.E. & Wang, Z.X. & Chan, Felix T.S. & Fu, X., 2019. "Data analytics in managing aircraft routing and maintenance staffing with price competition by a Stackelberg-Nash game model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 143-168.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6120-:d:1536968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.