IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p5994-d1531871.html
   My bibliography  Save this article

Electrification Planning for Off-Grid Communities in Sub-Saharan Africa: Advancing Energy Access

Author

Listed:
  • Bertha Lwakatare

    (Institute of new Energy Systems (InES), Technische Hochschule Ingolstadt (THI), 85049 Ingolstadt, Germany)

  • Priyanka Vyavahare

    (Institute of new Energy Systems (InES), Technische Hochschule Ingolstadt (THI), 85049 Ingolstadt, Germany)

  • Kedar Mehta

    (Institute of new Energy Systems (InES), Technische Hochschule Ingolstadt (THI), 85049 Ingolstadt, Germany)

  • Wilfried Zörner

    (Institute of new Energy Systems (InES), Technische Hochschule Ingolstadt (THI), 85049 Ingolstadt, Germany)

Abstract

Sub-Saharan Africa, especially its rural areas, faces significant challenges in achieving universal electrification despite its abundant renewable energy resources. The region has the highest population without access to electricity, largely due to economic, infrastructural, and geographical barriers. Energy poverty is a critical issue that hinders sustainable development and exacerbates inequalities. Namibia’s sustainable energy policy aligns with the global Sustainable Development Goals (SDGs), particularly SDG 7, which aims to provide affordable and reliable modern energy access for all. The policy emphasizes mini-grids and decentralized power systems as key strategies for rural electrification. However, despite increased deployment of mini-grids, these solutions often struggle with long-term sustainability. This research explores cost-effective electrification strategies through scenario-based modeling to reduce energy poverty and expand energy access in Namibia’s rural communities, focusing on the existing mini-grids in Tsumkwe and Gam. Using a comprehensive methodology that incorporates HOMER Pro for mini-grid capacity expansion and MS Excel for evaluating main-grid extensions, this study aims to identify the most feasible and economical electrification solutions. The analysis compares electricity supply, total net present cost, and the levelized cost of electricity across these systems. The findings will offer insights into addressing energy poverty in Namibia and provide recommendations for sustainable and scalable rural electrification across Sub-Saharan Africa.

Suggested Citation

  • Bertha Lwakatare & Priyanka Vyavahare & Kedar Mehta & Wilfried Zörner, 2024. "Electrification Planning for Off-Grid Communities in Sub-Saharan Africa: Advancing Energy Access," Energies, MDPI, vol. 17(23), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5994-:d:1531871
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/5994/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/5994/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aberilla, Jhud Mikhail & Gallego-Schmid, Alejandro & Stamford, Laurence & Azapagic, Adisa, 2020. "Design and environmental sustainability assessment of small-scale off-grid energy systems for remote rural communities," Applied Energy, Elsevier, vol. 258(C).
    2. Nishant Narayan & Victor Vega-Garita & Zian Qin & Jelena Popovic-Gerber & Pavol Bauer & Miro Zeman, 2020. "The Long Road to Universal Electrification: A Critical Look at Present Pathways and Challenges," Energies, MDPI, vol. 13(3), pages 1-20, January.
    3. Isa Ferrall & Georg Heinemann & Christian von Hirschhausen & Daniel M. Kammen, 2021. "The Role of Political Economy in Energy Access: Public and Private Off-Grid Electrification in Tanzania," Energies, MDPI, vol. 14(11), pages 1-23, May.
    4. Demirci, Alpaslan & Öztürk, Zafer & Tercan, Said Mirza, 2023. "Decision-making between hybrid renewable energy configurations and grid extension in rural areas for different climate zones," Energy, Elsevier, vol. 262(PA).
    5. Kenneth Lee & Edward Miguel & Catherine Wolfram, 2016. "Appliance Ownership and Aspirations among Electric Grid and Home Solar Households in Rural Kenya," American Economic Review, American Economic Association, vol. 106(5), pages 89-94, May.
    6. Adenle, Ademola A., 2020. "Assessment of solar energy technologies in Africa-opportunities and challenges in meeting the 2030 agenda and sustainable development goals," Energy Policy, Elsevier, vol. 137(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emrah Kocak & Hayriye Hilal Baglitas, 2022. "The path to sustainable municipal solid waste management: Do human development, energy efficiency, and income inequality matter?," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1947-1962, December.
    2. Charfeddine, Lanouar & Umlai, Mohamed, 2023. "ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    3. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    4. Rodriguez, Mauricio & Arcos-Aviles, Diego & Guinjoan, Francesc, 2024. "Simple fuzzy logic-based energy management for power exchange in isolated multi-microgrid systems: A case study in a remote community in the Amazon region of Ecuador," Applied Energy, Elsevier, vol. 357(C).
    5. Lemence, Allen Lemuel G. & Tamayao, Mili-Ann M., 2021. "Energy consumption profile estimation and benefits of hybrid solar energy system adoption for rural health units in the Philippines," Renewable Energy, Elsevier, vol. 178(C), pages 651-668.
    6. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    7. Francesco Tonini & Francesco Davide Sanvito & Fabrizio Colombelli & Emanuela Colombo, 2022. "Improving Sustainable Access to Electricity in Rural Tanzania: A System Dynamics Approach to the Matembwe Village," Energies, MDPI, vol. 15(5), pages 1-17, March.
    8. Jan K. Kazak & Joanna A. Kamińska & Rafał Madej & Marta Bochenkiewicz, 2020. "Where Renewable Energy Sources Funds are Invested? Spatial Analysis of Energy Production Potential and Public Support," Energies, MDPI, vol. 13(21), pages 1-26, October.
    9. Robin Burgess & Michael Greenstone & Nicholas Ryan & Anant Sudarshan, 2020. "Demand for Electricity on the Global Electrification Frontier," Cowles Foundation Discussion Papers 2222, Cowles Foundation for Research in Economics, Yale University.
    10. Magdalena Tutak & Jarosław Brodny & Peter Bindzár, 2021. "Assessing the Level of Energy and Climate Sustainability in the European Union Countries in the Context of the European Green Deal Strategy and Agenda 2030," Energies, MDPI, vol. 14(6), pages 1-32, March.
    11. Pereira, Géssica Michelle dos Santos & Weigert, Gabriela Rosalee & Macedo, Pablo Lopes & Silva, Kiane Alves e & Segura Salas, Cresencio Silvio & Gonçalves, Antônio Maurício de Matos & Nascimento, Hebe, 2022. "Quasi-dynamic operation and maintenance plan for photovoltaic systems in remote areas: The framework of Pantanal-MS," Renewable Energy, Elsevier, vol. 181(C), pages 404-416.
    12. Richmond, Jennifer & Urpelainen, Johannes, 2019. "Electrification and appliance ownership over time: Evidence from rural India," Energy Policy, Elsevier, vol. 133(C).
    13. Rains, Emily & Abraham, Ronald J., 2018. "Rethinking barriers to electrification: Does government collection failure stunt public service provision?," Energy Policy, Elsevier, vol. 114(C), pages 288-300.
    14. Harrington, Elise & Athavankar, Ameya & Hsu, David, 2020. "Variation in rural household energy transitions for basic lighting in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    15. Sheridan, Steve & Sunderland, Keith & Courtney, Jane, 2023. "Swarm electrification: A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    16. Isabelo Rabuya & Melissa Libres & Michael Lochinvar Abundo & Evelyn Taboada, 2021. "Moving Up the Electrification Ladder in Off-Grid Settlements with Rooftop Solar Microgrids," Energies, MDPI, vol. 14(12), pages 1-32, June.
    17. Solomon Kiros & Baseem Khan & Sanjeevikumar Padmanaban & Hassan Haes Alhelou & Zbigniew Leonowicz & Om Prakash Mahela & Jens Bo Holm-Nielsen, 2020. "Development of Stand-Alone Green Hybrid System for Rural Areas," Sustainability, MDPI, vol. 12(9), pages 1-14, May.
    18. David Rapson & Erich Muehlegger, 2023. "Global Transportation Decarbonization," Journal of Economic Perspectives, American Economic Association, vol. 37(3), pages 163-188, Summer.
    19. Best, Rohan, 2023. "Assets power solar and battery uptake in Kenya," Energy Economics, Elsevier, vol. 123(C).
    20. Mabele, Mathew Bukhi, 2020. "The ‘war on charcoal’ and its paradoxes for Tanzania's conservation and development," Energy Policy, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5994-:d:1531871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.