IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i22p5581-d1516851.html
   My bibliography  Save this article

A Comprehensive Approach to Nearly Zero Energy Buildings and Districts: Analysis of a Region Undergoing Energy Transition

Author

Listed:
  • Georgios Martinopoulos

    (Chemical Process and Energy Resources Institute, Center for Research and Technology Hellas, Thermi, GR-57001 Thessalonik, Greece
    Merchant Marine Academy of Macedonia, Néa Michanióna, GR-57004 Thessaloniki, Greece)

  • Alexandros Tsimpoukis

    (Chemical Process and Energy Resources Institute, Center for Research and Technology Hellas, Thermi, GR-57001 Thessalonik, Greece)

  • Vasileios Sougkakis

    (Chemical Process and Energy Resources Institute, Center for Research and Technology Hellas, Thermi, GR-57001 Thessalonik, Greece)

  • Petros Dallas

    (Chemical Process and Energy Resources Institute, Center for Research and Technology Hellas, Thermi, GR-57001 Thessalonik, Greece)

  • Komninos Angelakoglou

    (Chemical Process and Energy Resources Institute, Center for Research and Technology Hellas, Thermi, GR-57001 Thessalonik, Greece)

  • Paraskevi Giourka

    (Chemical Process and Energy Resources Institute, Center for Research and Technology Hellas, Thermi, GR-57001 Thessalonik, Greece)

  • Nikolaos Nikolopoulos

    (Chemical Process and Energy Resources Institute, Center for Research and Technology Hellas, Thermi, GR-57001 Thessalonik, Greece)

Abstract

This paper explores the development of positive energy communities using Eordaia, Greece, as a case study. The approach combines building and district-level energy analysis to achieve nearly zero energy performance through retrofitting, district-level storage systems, and renewable energy technologies. A parametric analysis utilizing RETSCREEN Expert and EnergyPlan software determines the optimal mix of technologies based on technical and financial parameters, with Eordaia, a region in energy transition and part of the RESPONSE Horizon project, illustrating the practical benefits. It includes a neighborhood of 105 mixed-use properties and two municipal buildings where a range of renewable energy sources and energy efficiency measures are applied. Insulation, photovoltaic systems, LED lighting, predictive thermostats, and windows coated with nanotechnology are some of the key interventions considered. The findings show considerable reductions in CO 2 emissions and energy use, with payback periods ranging from 8.7 to 9.6 years. This study underscores the value of district-level strategies over individual building retrofits, highlighting cost savings and improved energy performance. These findings offer valuable insights for urban planners and policymakers aiming to transform urban areas into sustainable, positive energy districts, supporting the EU’s 2050 net-zero emissions goals.

Suggested Citation

  • Georgios Martinopoulos & Alexandros Tsimpoukis & Vasileios Sougkakis & Petros Dallas & Komninos Angelakoglou & Paraskevi Giourka & Nikolaos Nikolopoulos, 2024. "A Comprehensive Approach to Nearly Zero Energy Buildings and Districts: Analysis of a Region Undergoing Energy Transition," Energies, MDPI, vol. 17(22), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5581-:d:1516851
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/22/5581/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/22/5581/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Łukasz Augustowski & Piotr Kułyk, 2023. "The Economic Profitability of Photovoltaic Installations in Households in Poland from a New Policy Perspective," Energies, MDPI, vol. 16(22), pages 1-16, November.
    2. Tsilingiridis, G. & Martinopoulos, G., 2010. "Thirty years of domestic solar hot water systems use in Greece – energy and environmental benefits – future perspectives," Renewable Energy, Elsevier, vol. 35(2), pages 490-497.
    3. Delmastro, Chiara & Gargiulo, Maurizio, 2020. "Capturing the long-term interdependencies between building thermal energy supply and demand in urban planning strategies," Applied Energy, Elsevier, vol. 268(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carnevale, E. & Lombardi, L. & Zanchi, L., 2014. "Life Cycle Assessment of solar energy systems: Comparison of photovoltaic and water thermal heater at domestic scale," Energy, Elsevier, vol. 77(C), pages 434-446.
    2. Greening, Benjamin & Azapagic, Adisa, 2014. "Domestic solar thermal water heating: A sustainable option for the UK?," Renewable Energy, Elsevier, vol. 63(C), pages 23-36.
    3. Halawa, E. & Chang, K.C. & Yoshinaga, M., 2015. "Thermal performance evaluation of solar water heating systems in Australia, Taiwan and Japan – A comparative review," Renewable Energy, Elsevier, vol. 83(C), pages 1279-1286.
    4. Yurtsev, Arif & Jenkins, Glenn P., 2016. "Cost-effectiveness analysis of alternative water heater systems operating with unreliable water supplies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 174-183.
    5. Shiyi Song & Hong Leng & Ran Guo, 2022. "Multi-Agent-Based Model for the Urban Macro-Level Impact Factors of Building Energy Consumption on Different Types of Land," Land, MDPI, vol. 11(11), pages 1-24, November.
    6. Arif Yurtsev & Glenn P Jenkins, 2016. "An economic analysis of policies for promoting economically efficient water heater systems operating under seasonal climatic conditions," Energy & Environment, , vol. 27(2), pages 227-240, March.
    7. Giglio, T. & Santos, V. & Lamberts, R., 2019. "Analyzing the impact of small solar water heating systems on peak demand and on emissions in the Brazilian context," Renewable Energy, Elsevier, vol. 133(C), pages 1404-1413.
    8. Ana Cristina Ferreira & Angela Silva & José Carlos Teixeira & Senhorinha Teixeira, 2020. "Multi-Objective Optimization of Solar Thermal Systems Applied to Portuguese Dwellings," Energies, MDPI, vol. 13(24), pages 1-23, December.
    9. Diane Palmer & Elena Koumpli & Ian Cole & Ralph Gottschalg & Thomas Betts, 2018. "A GIS-Based Method for Identification of Wide Area Rooftop Suitability for Minimum Size PV Systems Using LiDAR Data and Photogrammetry," Energies, MDPI, vol. 11(12), pages 1-22, December.
    10. Mrówczyńska, M. & Skiba, M. & Sztubecka, M. & Bazan-Krzywoszańska, A. & Kazak, J.K. & Gajownik, P., 2021. "Scenarios as a tool supporting decisions in urban energy policy: The analysis using fuzzy logic, multi-criteria analysis and GIS tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    11. Tsilingiridis, G. & Ikonomopoulos, A., 2013. "First results of incentives policy on grid interconnected photovoltaic systems development in Greece," Energy Policy, Elsevier, vol. 58(C), pages 303-311.
    12. Gao, Datong & Kwan, Trevor Hocksun & Dabwan, Yousef Naji & Hu, Maobin & Hao, Yong & Zhang, Tao & Pei, Gang, 2022. "Seasonal-regulatable energy systems design and optimization for solar energy year-round utilization☆," Applied Energy, Elsevier, vol. 322(C).
    13. Alexandru Şerban & Nicoleta Bărbuţă-Mişu & Nicoleta Ciucescu & Simona Paraschiv & Spiru Paraschiv, 2016. "Economic and Environmental Analysis of Investing in Solar Water Heating Systems," Sustainability, MDPI, vol. 8(12), pages 1-21, December.
    14. Wakeel, Muhammad & Chen, Bin & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2016. "Energy consumption for water use cycles in different countries: A review," Applied Energy, Elsevier, vol. 178(C), pages 868-885.
    15. Martinopoulos, G. & Tsalikis, G., 2018. "Diffusion and adoption of solar energy conversion systems – The case of Greece," Energy, Elsevier, vol. 144(C), pages 800-807.
    16. Yang, Xining & Hu, Mingming & Heeren, Niko & Zhang, Chunbo & Verhagen, Teun & Tukker, Arnold & Steubing, Bernhard, 2020. "A combined GIS-archetype approach to model residential space heating energy: A case study for the Netherlands including validation," Applied Energy, Elsevier, vol. 280(C).
    17. Massimiliano Manfren & Maurizio Sibilla & Lamberto Tronchin, 2021. "Energy Modelling and Analytics in the Built Environment—A Review of Their Role for Energy Transitions in the Construction Sector," Energies, MDPI, vol. 14(3), pages 1-29, January.
    18. Herreras Martínez, Sara & Harmsen, Robert & Menkveld, Marijke & Faaij, André & Kramer, Gert Jan, 2022. "Municipalities as key actors in the heat transition to decarbonise buildings: Experiences from local planning and implementation in a learning context," Energy Policy, Elsevier, vol. 169(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5581-:d:1516851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.