IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i2p490-497.html
   My bibliography  Save this article

Thirty years of domestic solar hot water systems use in Greece – energy and environmental benefits – future perspectives

Author

Listed:
  • Tsilingiridis, G.
  • Martinopoulos, G.

Abstract

The effort to reduce the dependence on imported crude oil in Greece, after the oil crises in the '70s, has resulted, among others, in a total installed area of 3.57millionm2 solar collectors in 2007, making Greece one of the pioneers in the use of domestic solar hot water system (DSHWS) worldwide.

Suggested Citation

  • Tsilingiridis, G. & Martinopoulos, G., 2010. "Thirty years of domestic solar hot water systems use in Greece – energy and environmental benefits – future perspectives," Renewable Energy, Elsevier, vol. 35(2), pages 490-497.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:2:p:490-497
    DOI: 10.1016/j.renene.2009.05.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109002171
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.05.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diane Palmer & Elena Koumpli & Ian Cole & Ralph Gottschalg & Thomas Betts, 2018. "A GIS-Based Method for Identification of Wide Area Rooftop Suitability for Minimum Size PV Systems Using LiDAR Data and Photogrammetry," Energies, MDPI, vol. 11(12), pages 1-22, December.
    2. Wakeel, Muhammad & Chen, Bin & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2016. "Energy consumption for water use cycles in different countries: A review," Applied Energy, Elsevier, vol. 178(C), pages 868-885.
    3. Alexandru Şerban & Nicoleta Bărbuţă-Mişu & Nicoleta Ciucescu & Simona Paraschiv & Spiru Paraschiv, 2016. "Economic and Environmental Analysis of Investing in Solar Water Heating Systems," Sustainability, MDPI, vol. 8(12), pages 1-21, December.
    4. Yurtsev, Arif & Jenkins, Glenn P., 2016. "Cost-effectiveness analysis of alternative water heater systems operating with unreliable water supplies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 174-183.
    5. Tsilingiridis, G. & Ikonomopoulos, A., 2013. "First results of incentives policy on grid interconnected photovoltaic systems development in Greece," Energy Policy, Elsevier, vol. 58(C), pages 303-311.
    6. Halawa, E. & Chang, K.C. & Yoshinaga, M., 2015. "Thermal performance evaluation of solar water heating systems in Australia, Taiwan and Japan – A comparative review," Renewable Energy, Elsevier, vol. 83(C), pages 1279-1286.
    7. Greening, Benjamin & Azapagic, Adisa, 2014. "Domestic solar thermal water heating: A sustainable option for the UK?," Renewable Energy, Elsevier, vol. 63(C), pages 23-36.
    8. Carnevale, E. & Lombardi, L. & Zanchi, L., 2014. "Life Cycle Assessment of solar energy systems: Comparison of photovoltaic and water thermal heater at domestic scale," Energy, Elsevier, vol. 77(C), pages 434-446.
    9. Ana Cristina Ferreira & Angela Silva & José Carlos Teixeira & Senhorinha Teixeira, 2020. "Multi-Objective Optimization of Solar Thermal Systems Applied to Portuguese Dwellings," Energies, MDPI, vol. 13(24), pages 1-23, December.
    10. Martinopoulos, G. & Tsalikis, G., 2018. "Diffusion and adoption of solar energy conversion systems – The case of Greece," Energy, Elsevier, vol. 144(C), pages 800-807.
    11. Arif Yurtsev & Glenn P Jenkins, 2016. "An economic analysis of policies for promoting economically efficient water heater systems operating under seasonal climatic conditions," Energy & Environment, , vol. 27(2), pages 227-240, March.
    12. Giglio, T. & Santos, V. & Lamberts, R., 2019. "Analyzing the impact of small solar water heating systems on peak demand and on emissions in the Brazilian context," Renewable Energy, Elsevier, vol. 133(C), pages 1404-1413.
    13. Gao, Datong & Kwan, Trevor Hocksun & Dabwan, Yousef Naji & Hu, Maobin & Hao, Yong & Zhang, Tao & Pei, Gang, 2022. "Seasonal-regulatable energy systems design and optimization for solar energy year-round utilization☆," Applied Energy, Elsevier, vol. 322(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:2:p:490-497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.