IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i21p5516-d1513893.html
   My bibliography  Save this article

Is the Corporate Average Fuel Economy Scheme Effective at Improving Vehicle Fuel Efficiency in a Small-Scale Market? Evidence from Taiwan

Author

Listed:
  • Hwa Lin

    (Department of Resources Engineering, National Cheng Kung University, Tainan 701, Taiwan
    Mechanical and Mechatronics Systems Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan)

  • Yun-Hsun Huang

    (Department of Resources Engineering, National Cheng Kung University, Tainan 701, Taiwan)

  • Jung-Hua Wu

    (Department of Resources Engineering, National Cheng Kung University, Tainan 701, Taiwan)

Abstract

This article discusses how the introduction of corporate average fuel economy (CAFE) standards in Taiwan, whose market and industry size are much smaller than those of Europe, the United States, Japan, and China, can effectively improve vehicle energy efficiency. It examines the changes in passenger car energy efficiency under Taiwan’s CAFE framework and evaluates CAFE compliance performance to summarize its impacts and challenges. Observations indicate that the strategically flexible CAFE scheme is indeed more effective than mandatory minimum energy performance standards (MEPS) in encouraging manufacturers to comply through various methods. This approach has ultimately increased the overall average fuel efficiency of Taiwan’s passenger cars by 23.5% since 2012, while maintaining the diversity of vehicle models in the market. However, there are challenges to implementing CAFE in a small market, such as difficulties in introducing and promoting high-efficiency models, limited activity in the CAFE credit market, and the current overly favorable policy design. The design of the CAFE mechanism is crucial not only for benchmarking with larger economies but also for taking into account local market conditions and industrial capabilities. Taiwan’s next phase of CAFE must incorporate multi-dimensional adjustments to achieve higher, potentially net-zero vehicle efficiency targets.

Suggested Citation

  • Hwa Lin & Yun-Hsun Huang & Jung-Hua Wu, 2024. "Is the Corporate Average Fuel Economy Scheme Effective at Improving Vehicle Fuel Efficiency in a Small-Scale Market? Evidence from Taiwan," Energies, MDPI, vol. 17(21), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5516-:d:1513893
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/21/5516/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/21/5516/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Doucette, Reed T. & McCulloch, Malcolm D., 2011. "Modeling the prospects of plug-in hybrid electric vehicles to reduce CO2 emissions," Applied Energy, Elsevier, vol. 88(7), pages 2315-2323, July.
    2. Mariusz Graba & Jarosław Mamala & Andrzej Bieniek & Andrzej Augustynowicz & Krystian Czernek & Andżelika Krupińska & Sylwia Włodarczak & Marek Ochowiak, 2023. "Assessment of Energy Demand for PHEVs in Year-Round Operating Conditions," Energies, MDPI, vol. 16(14), pages 1-19, July.
    3. Tikoudis, Ioannis & Mebiame, Rose Mba & Oueslati, Walid, 2023. "Projecting the fuel efficiency of conventional vehicles: CAFE regulations, gasoline taxes and autonomous technical change," Energy Policy, Elsevier, vol. 183(C).
    4. Clerides, Sofronis & Zachariadis, Theodoros, 2008. "The effect of standards and fuel prices on automobile fuel economy: An international analysis," Energy Economics, Elsevier, vol. 30(5), pages 2657-2672, September.
    5. Shiau, Ching-Shin Norman & Michalek, Jeremy J. & Hendrickson, Chris T., 2009. "A structural analysis of vehicle design responses to Corporate Average Fuel Economy policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(9-10), pages 814-828, November.
    6. Ioannis Tikoudis & Rose Mba Mebiame & Walid Oueslati, 2022. "Projecting the fuel efficiency of conventional vehicles: The role of regulations, gasoline taxes and autonomous technical change," OECD Environment Working Papers 198, OECD Publishing.
    7. Zirogiannis, Nikolaos & Duncan, Denvil & Carley, Sanya & Siddiki, Saba & Graham, John D., 2019. "The effect of CAFE standards on vehicle sales projections: A Total Cost of Ownership approach," Transport Policy, Elsevier, vol. 75(C), pages 70-87.
    8. Plotkin, Steven E., 2009. "Examining fuel economy and carbon standards for light vehicles," Energy Policy, Elsevier, vol. 37(10), pages 3843-3853, October.
    9. Pinelopi Koujianou Goldberg, 1998. "The Effects of the Corporate Average Fuel Efficiency Standards in the US," Journal of Industrial Economics, Wiley Blackwell, vol. 46(1), pages 1-33, March.
    10. Sen, Burak & Noori, Mehdi & Tatari, Omer, 2017. "Will Corporate Average Fuel Economy (CAFE) Standard help? Modeling CAFE's impact on market share of electric vehicles," Energy Policy, Elsevier, vol. 109(C), pages 279-287.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahlia, T.M.I. & Tohno, S. & Tezuka, T., 2012. "History and current status of the motor vehicle energy labeling and its implementation possibilities in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1828-1844.
    2. Skeete, Jean-Paul, 2017. "Examining the role of policy design and policy interaction in EU automotive emissions performance gaps," Energy Policy, Elsevier, vol. 104(C), pages 373-381.
    3. Whistance, Jarrett & Thompson, Wyatt, 2014. "The role of CAFE standards and alternative-fuel vehicle production credits in U.S. biofuels markets," Energy Policy, Elsevier, vol. 74(C), pages 147-157.
    4. Li, Yi & Wang, Zhaohua & Wang, Ke & Zhang, Bin, 2021. "Fuel economy of Chinese light-duty car manufacturers: An efficiency analysis perspective," Energy, Elsevier, vol. 220(C).
    5. Thomas Klier & Joshua Linn, 2011. "Corporate Average Fuel Economy Standards and the Market for New Vehicles," Annual Review of Resource Economics, Annual Reviews, vol. 3(1), pages 445-462, October.
    6. Al-Alawi, Baha M. & Bradley, Thomas H., 2014. "Analysis of corporate average fuel economy regulation compliance scenarios inclusive of plug in hybrid vehicles," Applied Energy, Elsevier, vol. 113(C), pages 1323-1337.
    7. Mabit, Stefan L., 2014. "Vehicle type choice under the influence of a tax reform and rising fuel prices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 32-42.
    8. Givord, Pauline & Grislain-Letrémy, Céline & Naegele, Helene, 2018. "How do fuel taxes impact new car purchases? An evaluation using French consumer-level data," Energy Economics, Elsevier, vol. 74(C), pages 76-96.
    9. Tikoudis, Ioannis & Mebiame, Rose Mba & Oueslati, Walid, 2023. "Projecting the fuel efficiency of conventional vehicles: CAFE regulations, gasoline taxes and autonomous technical change," Energy Policy, Elsevier, vol. 183(C).
    10. Yip, Arthur H.C. & Michalek, Jeremy J. & Whitefoot, Kate S., 2018. "On the implications of using composite vehicles in choice model prediction," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 163-188.
    11. Tanaka, Shinsuke, 2020. "When tax incentives drive illicit behavior: The manipulation of fuel economy in the automobile industry," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    12. Doremus, Jacqueline & Helfand, Gloria & Liu, Changzheng & Donahue, Marie & Kahan, Ari & Shelby, Michael, 2019. "Simpler is better: Predicting consumer vehicle purchases in the short run," Energy Policy, Elsevier, vol. 129(C), pages 1404-1415.
    13. Wang, Sinan & Chen, Kangda & Zhao, Fuquan & Hao, Han, 2019. "Technology pathways for complying with Corporate Average Fuel Consumption regulations up to 2030: A case study of China," Applied Energy, Elsevier, vol. 241(C), pages 257-277.
    14. Jun, Seung-Pyo & Yoo, Hyoung Sun & Kim, Ji-Hui, 2016. "A study on the effects of the CAFE standard on consumers," Energy Policy, Elsevier, vol. 91(C), pages 148-160.
    15. Wells, Peter & Varma, Adarsh & Newman, Dan & Kay, Duncan & Gibson, Gena & Beevor, Jamie & Skinner, Ian, 2013. "Governmental regulation impact on producers and consumers: A longitudinal analysis of the European automotive market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 47(C), pages 28-41.
    16. Sofronis Clerides & Theodoros Zachariadis, 2006. "Are standards Effective in Improving Automobile Fuel Economy?," University of Cyprus Working Papers in Economics 6-2006, University of Cyprus Department of Economics.
    17. Kangda Chen & Fuquan Zhao & Han Hao & Zongwei Liu & Xinglong Liu, 2021. "Hierarchical Optimization Decision-Making Method to Comply with China’s Fuel Consumption and New Energy Vehicle Credit Regulations," Sustainability, MDPI, vol. 13(14), pages 1-25, July.
    18. Shigemi Kagawa & Yuriko Goto & Sangwon Suh & Keisuke Nansai & Yuki Kudoh, 2012. "Accounting for Changes in Automobile Gasoline Consumption in Japan: 2000–2007," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 1(1), pages 1-27, December.
    19. Bhardwaj, Chandan & Axsen, Jonn & Kern, Florian & McCollum, David, 2020. "Why have multiple climate policies for light-duty vehicles? Policy mix rationales, interactions and research gaps," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 309-326.
    20. Tao, Miaomiao, 2024. "Dynamics between electric vehicle uptake and green development: Understanding the role of local government competition," Transport Policy, Elsevier, vol. 146(C), pages 227-240.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5516-:d:1513893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.