IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i21p5493-d1512930.html
   My bibliography  Save this article

Ultra-Short-Term Wind Power Forecasting in Complex Terrain: A Physics-Based Approach

Author

Listed:
  • Dimitrios Michos

    (Laboratory of Atmospheric Physics, University of Patras, 26500 Patras, Greece)

  • Francky Catthoor

    (Interuniversity Microelectronics Centre (IMEC) vzw, Kapeldreef 75, 3001 Leuven, Belgium
    ESAT-EE, Katholieke Universiteit (K.U.), 3000 Leuven, Belgium)

  • Dimitris Foussekis

    (CRES Wind Farm, 19009 Lavrio, Greece)

  • Andreas Kazantzidis

    (Laboratory of Atmospheric Physics, University of Patras, 26500 Patras, Greece)

Abstract

This paper proposes a method based on Computational Fluid Dynamics (CFD) and the detection of Wind Energy Extraction Latency for a given wind turbine (WT) designed for ultra-short-term (UST) wind energy forecasting over complex terrain. The core of the suggested modeling approach is the Wind Spatial Extrapolation model (WiSpEx). Measured vertical wind profile data are used as the inlet for stationary CFD simulations to reconstruct the wind flow over a wind farm (WF). This wind field reconstruction helps operators obtain the wind speed and available wind energy at the hub height of the installed WTs, enabling the estimation of their energy production. WT power output is calculated by accounting for the average time it takes for the turbine to adjust its power output in response to changes in wind speed. The proposed method is evaluated with data from two WTs (E40-500, NM 750/48). The wind speed dataset used for this study contains ramp events and wind speeds that range in magnitude from 3 m/s to 18 m/s. The results show that the proposed method can achieve a Symmetric Mean Absolute Percentage Error (SMAPE) of 8.44% for E40-500 and 9.26% for NM 750/48, even with significant simplifications, while the SMAPE of the persistence model is above 15.03% for E40-500 and 16.12% for NM 750/48. Each forecast requires less than two minutes of computational time on a low-cost commercial platform. This performance is comparable to state-of-the-art methods and significantly faster than time-dependent simulations. Such simulations necessitate excessive computational resources, making them impractical for online forecasting.

Suggested Citation

  • Dimitrios Michos & Francky Catthoor & Dimitris Foussekis & Andreas Kazantzidis, 2024. "Ultra-Short-Term Wind Power Forecasting in Complex Terrain: A Physics-Based Approach," Energies, MDPI, vol. 17(21), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5493-:d:1512930
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/21/5493/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/21/5493/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Navid Shirzadi & Fuzhan Nasiri & Ramanunni Parakkal Menon & Pilar Monsalvete & Anton Kaifel & Ursula Eicker, 2023. "Smart Urban Wind Power Forecasting: Integrating Weibull Distribution, Recurrent Neural Networks, and Numerical Weather Prediction," Energies, MDPI, vol. 16(17), pages 1-17, August.
    2. Manfren, Massimiliano & Caputo, Paola & Costa, Gaia, 2011. "Paradigm shift in urban energy systems through distributed generation: Methods and models," Applied Energy, Elsevier, vol. 88(4), pages 1032-1048, April.
    3. Dimitrios Michos & Francky Catthoor & Dimitris Foussekis & Andreas Kazantzidis, 2024. "A CFD Model for Spatial Extrapolation of Wind Field over Complex Terrain—Wi.Sp.Ex," Energies, MDPI, vol. 17(16), pages 1-15, August.
    4. Yang, Mao & Wang, Da & Zhang, Wei, 2023. "A short-term wind power prediction method based on dynamic and static feature fusion mining," Energy, Elsevier, vol. 280(C).
    5. Yan, Shu & Shi, Shaoping & Chen, Xinming & Wang, Xiaodong & Mao, Linzhi & Liu, Xiaojie, 2018. "Numerical simulations of flow interactions between steep hill terrain and large scale wind turbine," Energy, Elsevier, vol. 151(C), pages 740-747.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhigang Liu & Jin Wang & Tao Tao & Ziyun Zhang & Siyi Chen & Yang Yi & Shuang Han & Yongqian Liu, 2023. "Wave Power Prediction Based on Seasonal and Trend Decomposition Using Locally Weighted Scatterplot Smoothing and Dual-Channel Seq2Seq Model," Energies, MDPI, vol. 16(22), pages 1-17, November.
    2. Villa-Arrieta, Manuel & Sumper, Andreas, 2018. "A model for an economic evaluation of energy systems using TRNSYS," Applied Energy, Elsevier, vol. 215(C), pages 765-777.
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    5. Akintayo T. Abolude & Wen Zhou, 2018. "A Comparative Computational Fluid Dynamic Study on the Effects of Terrain Type on Hub-Height Wind Aerodynamic Properties," Energies, MDPI, vol. 12(1), pages 1-14, December.
    6. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    7. Stadler, M. & Groissböck, M. & Cardoso, G. & Marnay, C., 2014. "Optimizing Distributed Energy Resources and building retrofits with the strategic DER-CAModel," Applied Energy, Elsevier, vol. 132(C), pages 557-567.
    8. Aste, Niccolò & Del Pero, Claudio & Leonforte, Fabrizio & Manfren, Massimiliano, 2013. "A simplified model for the estimation of energy production of PV systems," Energy, Elsevier, vol. 59(C), pages 503-512.
    9. Theresa Liegl & Simon Schramm & Philipp Kuhn & Thomas Hamacher, 2023. "Considering Socio-Technical Parameters in Energy System Models—The Current Status and Next Steps," Energies, MDPI, vol. 16(20), pages 1-19, October.
    10. Yazdanie, Mashael & Densing, Martin & Wokaun, Alexander, 2017. "Cost optimal urban energy systems planning in the context of national energy policies: A case study for the city of Basel," Energy Policy, Elsevier, vol. 110(C), pages 176-190.
    11. Huang, Zishuo & Yu, Hang & Chu, Xiangyang & Peng, Zhenwei, 2017. "A goal programming based model system for community energy plan," Energy, Elsevier, vol. 134(C), pages 893-901.
    12. Michiel Fremouw & Annamaria Bagaini & Paolo De Pascali, 2020. "Energy Potential Mapping: Open Data in Support of Urban Transition Planning," Energies, MDPI, vol. 13(5), pages 1-15, March.
    13. Gao, Xiaoxia & Chen, Yao & Xu, Shinai & Gao, Wei & Zhu, Xiaoxun & Sun, Haiying & Yang, Hongxing & Han, Zhonghe & Wang, Yu & Lu, Hao, 2022. "Comparative experimental investigation into wake characteristics of turbines in three wind farms areas with varying terrain complexity from LiDAR measurements," Applied Energy, Elsevier, vol. 307(C).
    14. Xu, Zongyuan & Gao, Xiaoxia & Zhang, Huanqiang & Lv, Tao & Han, Zhonghe & Zhu, Xiaoxun & Wang, Yu, 2023. "Analysis of the anisotropy aerodynamic characteristics of downstream wind turbine considering the 3D wake expansion based on coupling method," Energy, Elsevier, vol. 263(PD).
    15. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    16. Hung, Duong Quoc & Mithulananthan, N., 2014. "Loss reduction and loadability enhancement with DG: A dual-index analytical approach," Applied Energy, Elsevier, vol. 115(C), pages 233-241.
    17. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.
    18. Meng, Anbo & Zhang, Haitao & Yin, Hao & Xian, Zikang & Chen, Shu & Zhu, Zibin & Zhang, Zheng & Rong, Jiayu & Li, Chen & Wang, Chenen & Wu, Zhenbo & Deng, Weisi & Luo, Jianqiang & Wang, Xiaolin, 2023. "A novel multi-gradient evolutionary deep learning approach for few-shot wind power prediction using time-series GAN," Energy, Elsevier, vol. 283(C).
    19. Pere Ariza-Montobbio & Susana Herrero Olarte, 2021. "Socio-metabolic profiles of electricity consumption along the rural–urban continuum of Ecuador: Whose energy sovereignty?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7961-7995, May.
    20. Aste, Niccolò & Adhikari, R.S. & Manfren, Massimiliano, 2013. "Cost optimal analysis of heat pump technology adoption in residential reference buildings," Renewable Energy, Elsevier, vol. 60(C), pages 615-624.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5493-:d:1512930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.