IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i21p5362-d1508435.html
   My bibliography  Save this article

Advanced Wastewater Treatment: Synergistic Integration of Reverse Electrodialysis with Electrochemical Degradation Driven by Low-Grade Heat

Author

Listed:
  • Qiang Leng

    (Institute of Building Energy and Thermal Science, Henan University of Science and Technology, Luoyang 471023, China)

  • Feilong Li

    (Institute of Building Energy and Thermal Science, Henan University of Science and Technology, Luoyang 471023, China)

  • Zhenxin Tao

    (Institute of Building Energy and Thermal Science, Henan University of Science and Technology, Luoyang 471023, China)

  • Zhanwei Wang

    (Institute of Building Energy and Thermal Science, Henan University of Science and Technology, Luoyang 471023, China)

  • Xi Wu

    (School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China)

Abstract

The reverse electrodialysis heat engine (REDHE) represents a transformative innovation that converts low-grade thermal energy into salinity gradient energy (SGE). This crucial form of energy powers reverse electrodialysis (RED) reactors, significantly changing wastewater treatment paradigms. This comprehensive review explores the forefront of this emerging field, offering a critical synthesis of key discoveries and theoretical foundations. This review begins with a summary of various oxidation degradation methods, including cathodic and anodic degradation processes, that can be integrated with RED technology. The degradation principles and characteristics of different RED wastewater treatment systems are also discussed. Then, this review examines the impact of several key operational parameters, degradation circulation modes, and multi-stage series systems on wastewater degradation performance and energy conversion efficiency in RED reactors. The analysis highlights the economic feasibility of using SGE derived from low-grade heat to power RED technology for wastewater treatment, offering the dual benefits of waste heat recovery and effective wastewater processing.

Suggested Citation

  • Qiang Leng & Feilong Li & Zhenxin Tao & Zhanwei Wang & Xi Wu, 2024. "Advanced Wastewater Treatment: Synergistic Integration of Reverse Electrodialysis with Electrochemical Degradation Driven by Low-Grade Heat," Energies, MDPI, vol. 17(21), pages 1-24, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5362-:d:1508435
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/21/5362/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/21/5362/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Yongwen & Wu, Xi & Sun, Dexin & Wang, Sixue & Xu, Shiming, 2023. "Techno-economic analysis of conversing the low-grade heat to hydrogen by using reverse electrodialysis – Air gap diffusion distillation coupled method for iron and steel industry," Energy, Elsevier, vol. 283(C).
    2. Kim, Deok Han & Park, Byung Ho & Kwon, Kilsung & Li, Longnan & Kim, Daejoong, 2017. "Modeling of power generation with thermolytic reverse electrodialysis for low-grade waste heat recovery," Applied Energy, Elsevier, vol. 189(C), pages 201-210.
    3. Forman, Clemens & Muritala, Ibrahim Kolawole & Pardemann, Robert & Meyer, Bernd, 2016. "Estimating the global waste heat potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1568-1579.
    4. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2018. "Performance analysis of reverse electrodialysis stacks: Channel geometry and flow rate optimization," Energy, Elsevier, vol. 158(C), pages 427-436.
    5. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2018. "Reverse electrodialysis: Modelling and performance analysis based on multi-objective optimization," Energy, Elsevier, vol. 151(C), pages 1-10.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Yanan & Luo, Zuoqing & Long, Rui & Liu, Zhichun & Liu, Wei, 2020. "Performance evaluations of an adsorption-based power and cooling cogeneration system under different operative conditions and working fluids," Energy, Elsevier, vol. 204(C).
    2. Wu, Xi & Zhang, Xinjie & Xu, Shiming & Gong, Ying & Yang, Shuaishuai & Jin, Dongxu, 2021. "Performance of a reverse electrodialysis cell working with potassium acetate−methanol−water solution," Energy, Elsevier, vol. 232(C).
    3. Ciofalo, Michele & La Cerva, Mariagiorgia & Di Liberto, Massimiliano & Gurreri, Luigi & Cipollina, Andrea & Micale, Giorgio, 2019. "Optimization of net power density in Reverse Electrodialysis," Energy, Elsevier, vol. 181(C), pages 576-588.
    4. Zhao, Yanan & Li, Mingliang & Long, Rui & Liu, Zhichun & Liu, Wei, 2021. "Dynamic modeling and analysis of an advanced adsorption-based osmotic heat engines to harvest solar energy," Renewable Energy, Elsevier, vol. 175(C), pages 638-649.
    5. Wu, Xi & Chen, Zhiwei & Han, Zhaozhe & Wei, Yonggang & Xu, Shiming & Zhu, Xiaojing, 2024. "Hydrogen and electricity cogeneration driven by the salinity gradient from actual brine and river water using reverse electrodialysis," Applied Energy, Elsevier, vol. 367(C).
    6. Long, Rui & Zhao, Yanan & Luo, Zuoqing & Li, Lei & Liu, Zhichun & Liu, Wei, 2020. "Alternative thermal regenerative osmotic heat engines for low-grade heat harvesting," Energy, Elsevier, vol. 195(C).
    7. Hailong Gao & Zhiyong Xiao & Jie Zhang & Xiaohan Zhang & Xiangdong Liu & Xinying Liu & Jin Cui & Jianbo Li, 2023. "Optimization Study on Salinity Gradient Energy Capture from Brine and Dilute Brine," Energies, MDPI, vol. 16(12), pages 1-16, June.
    8. Long, Rui & Lai, Xiaotian & Liu, Zhichun & Liu, Wei, 2019. "Pressure retarded osmosis: Operating in a compromise between power density and energy efficiency," Energy, Elsevier, vol. 172(C), pages 592-598.
    9. Li Yang & Yunfeng Ren & Zhihua Wang & Zhouming Hang & Yunxia Luo, 2021. "Simulation and Economic Research of Circulating Cooling Water Waste Heat and Water Resource Recovery System," Energies, MDPI, vol. 14(9), pages 1-13, April.
    10. Yang, Wei & Bao, Jingjing & Liu, Hongtao & Zhang, Jun & Guo, Lin, 2023. "Low-grade heat to hydrogen: Current technologies, challenges and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    11. Igor Burmistrov & Rita Khanna & Nikolay Gorshkov & Nikolay Kiselev & Denis Artyukhov & Elena Boychenko & Andrey Yudin & Yuri Konyukhov & Maksim Kravchenko & Alexander Gorokhovsky & Denis Kuznetsov, 2022. "Advances in Thermo-Electrochemical (TEC) Cell Performances for Harvesting Low-Grade Heat Energy: A Review," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    12. Markus Fritz & Ali Aydemir & Liselotte Schebek, 2022. "How Much Excess Heat Might Be Used in Buildings? A Spatial Analysis at the Municipal Level in Germany," Energies, MDPI, vol. 15(17), pages 1-17, August.
    13. Firth, Anton & Zhang, Bo & Yang, Aidong, 2019. "Quantification of global waste heat and its environmental effects," Applied Energy, Elsevier, vol. 235(C), pages 1314-1334.
    14. Long, Rui & Zhao, Yanan & Li, Mingliang & Pan, Yao & Liu, Zhichun & Liu, Wei, 2021. "Evaluations of adsorbents and salt-methanol solutions for low-grade heat driven osmotic heat engines," Energy, Elsevier, vol. 229(C).
    15. Tokarev, M.M. & Girnik, I.S. & Aristov, Yu.I., 2022. "Adsorptive transformation of ultralow-temperature heat using a “Heat from Cold” cycle," Energy, Elsevier, vol. 238(PC).
    16. Chen, Ruihua & Deng, Shuai & Xu, Weicong & Zhao, Li, 2020. "A graphic analysis method of electrochemical systems for low-grade heat harvesting from a perspective of thermodynamic cycles," Energy, Elsevier, vol. 191(C).
    17. Hong, Gui-Bing & Pan, Tze-Chin & Chan, David Yih-Liang & Liu, I-Hung, 2020. "Bottom-up analysis of industrial waste heat potential in Taiwan," Energy, Elsevier, vol. 198(C).
    18. Mateu-Royo, Carlos & Navarro-Esbrí, Joaquín & Mota-Babiloni, Adrián & Molés, Francisco & Amat-Albuixech, Marta, 2019. "Experimental exergy and energy analysis of a novel high-temperature heat pump with scroll compressor for waste heat recovery," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. Bertrand, Alexandre & Mian, Alberto & Kantor, Ivan & Aggoune, Riad & Maréchal, François, 2019. "Regional waste heat valorisation: A mixed integer linear programming method for energy service companies," Energy, Elsevier, vol. 167(C), pages 454-468.
    20. Kisorthman Vimalakanthan & Matthew Read & Ahmed Kovacevic, 2020. "Numerical Modelling and Experimental Validation of Twin-Screw Expanders," Energies, MDPI, vol. 13(18), pages 1-13, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5362-:d:1508435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.