IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i21p5252-d1503890.html
   My bibliography  Save this article

Review of Key Technologies of the High-Speed Permanent Magnet Motor Drive

Author

Listed:
  • Quntao An

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China
    State Key Laboratory of Hydro-Power Equipment, Harbin 150001, China)

  • Yuzhuo Lu

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Mengji Zhao

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

Abstract

The high-speed permanent magnet motor has been widely used in the industrial field because of its high-power density, fast dynamic response, and wide speed range. High efficiency and stable operation are the premises for the high-speed permanent magnet motor to exert its advantages. Firstly, this article analyzes the problems existing in the drive technology of high-speed permanent magnet motors from three aspects: current harmonics, rotor position detection, and low carrier ratios. Aiming to address the above problems, the status of the latest research is summarized from the aspects of harmonic suppression, position sensorless, and control strategies. In addition, future research trends for high-speed permanent magnet motors are discussed.

Suggested Citation

  • Quntao An & Yuzhuo Lu & Mengji Zhao, 2024. "Review of Key Technologies of the High-Speed Permanent Magnet Motor Drive," Energies, MDPI, vol. 17(21), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5252-:d:1503890
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/21/5252/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/21/5252/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Danyang Bao & Huiming Wu & Ruiqi Wang & Fei Zhao & Xuewei Pan, 2020. "Full-Order Sliding Mode Observer Based on Synchronous Frequency Tracking Filter for High-Speed Interior PMSM Sensorless Drives," Energies, MDPI, vol. 13(24), pages 1-19, December.
    2. Georgios E. Arnaoutakis & Georgia Kefala & Eirini Dakanali & Dimitris Al. Katsaprakakis, 2022. "Combined Operation of Wind-Pumped Hydro Storage Plant with a Concentrating Solar Power Plant for Insular Systems: A Case Study for the Island of Rhodes," Energies, MDPI, vol. 15(18), pages 1-23, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pawel Latosinski & Andrzej Bartoszewicz, 2023. "Sliding Mode Controllers in Energy Systems and Other Applications," Energies, MDPI, vol. 16(3), pages 1-4, January.
    2. Emanuela Privitera & Riccardo Caponetto & Fabio Matera & Salvatore Vasta, 2022. "Impact of Geometry on a Thermal-Energy Storage Finned Tube during the Discharging Process," Energies, MDPI, vol. 15(21), pages 1-22, October.
    3. Isaac Amoussou & Emmanuel Tanyi & Ahmed Ali & Takele Ferede Agajie & Baseem Khan & Julien Brito Ballester & Wirnkar Basil Nsanyuy, 2023. "Optimal Modeling and Feasibility Analysis of Grid-Interfaced Solar PV/Wind/Pumped Hydro Energy Storage Based Hybrid System," Sustainability, MDPI, vol. 15(2), pages 1-30, January.
    4. Yang Liu & Jin Zhao & Quan Yin, 2021. "Model-Based Predictive Rotor Field-Oriented Angle Compensation for Induction Machine Drives," Energies, MDPI, vol. 14(8), pages 1-13, April.
    5. Karol Kyslan & Viktor Petro & Peter Bober & Viktor Šlapák & František Ďurovský & Mateusz Dybkowski & Matúš Hric, 2022. "A Comparative Study and Optimization of Switching Functions for Sliding-Mode Observer in Sensorless Control of PMSM," Energies, MDPI, vol. 15(7), pages 1-17, April.
    6. Shuai Li & Ke Zhu & Liang Chen & Yao Yan & Qing Guo, 2022. "Variable Structure Disturbance Observer Based Dynamic Surface Control of Electrohydraulic Systems with Parametric Uncertainty," Energies, MDPI, vol. 15(5), pages 1-15, February.
    7. Lorenzo Carbone & Simone Cosso & Mario Marchesoni & Massimiliano Passalacqua & Luis Vaccaro, 2021. "State-Space Approach for SPMSM Sensorless Passive Algorithm Tuning," Energies, MDPI, vol. 14(21), pages 1-11, November.
    8. Papadakis C. Nikolaos & Fafalakis Marios & Katsaprakakis Dimitris, 2023. "A Review of Pumped Hydro Storage Systems," Energies, MDPI, vol. 16(11), pages 1-39, June.
    9. Khosrow Hemmatpour & Ramin Ghasemiasl & Mehrdad Malekzadeh dirin & Mohammad Amin Javadi, 2023. "Time-Transient Optimization of Electricity and Fresh Water Cogeneration Cycle Using Gas Fuel and Solar Energy," Mathematics, MDPI, vol. 11(3), pages 1-21, January.
    10. Georgios E. Arnaoutakis & Gudrun Kocher-Oberlehner & Dimitris Al. Katsaprakakis, 2023. "Criteria-Based Model of Hybrid Photovoltaic–Wind Energy System with Micro-Compressed Air Energy Storage," Mathematics, MDPI, vol. 11(2), pages 1-15, January.
    11. Yujiao Zhao & Haisheng Yu & Shixian Wang, 2021. "An Improved Super-Twisting High-Order Sliding Mode Observer for Sensorless Control of Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 14(19), pages 1-18, September.
    12. Jongwon Choi, 2021. "Regression Model-Based Flux Observer for IPMSM Sensorless Control with Wide Speed Range," Energies, MDPI, vol. 14(19), pages 1-18, October.
    13. Chaoyang Chen & Hualing Liu & Yong Xiao & Fagen Zhu & Li Ding & Fuwen Yang, 2022. "Power Generation Scheduling for a Hydro-Wind-Solar Hybrid System: A Systematic Survey and Prospect," Energies, MDPI, vol. 15(22), pages 1-31, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5252-:d:1503890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.