IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i20p5154-d1500113.html
   My bibliography  Save this article

Storing Excess Solar Power in Hot Water on Household Level as Power-to-Heat System

Author

Listed:
  • Ivar Kotte

    (Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, The Netherlands)

  • Emma Snaak

    (Solyx Energy B.V. Smitspol 15M, 3861 RS Nijkerk, The Netherlands)

  • Wilfried van Sark

    (Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, The Netherlands)

Abstract

PV technology has become widespread in the Netherlands, reaching a cumulative installed capacity of 22.4 GWp in 2023 and ranking second in the world for solar PV per capita at 1268 W/capita. Despite this growth, there is an inherent discrepancy between energy supply and demand during the day. While the netting system in the Netherlands can currently negate the economic drawbacks of this discrepancy, grid congestion and imbalanced electricity prices show that improvements are highly desirable for the sustainability of electricity grids. This research analyzes the effectiveness of a Power-to-Domestic-Hot-Water (P2DHW) system at improving the utilization of excess PV electricity in Dutch households and compares it to similar technologies. The results show that the example P2DHW system, the WaterAccu, compares favorably as a low cost and flexible solution. In particular, for twelve different households differing in size (1–6 occupants), PV capacity (2.4–8 kWp), and size of hot water storage boiler (50–300 L), it is shown that the total economic benefits for the period 2024–2032 vary from −€13 to €3055, assuming the current net metering scheme is abolished in 2027. Only for large households with low PV capacity are the benefits a little negative. Based on a multi-criteria analysis, it is found that the WaterAccu is the cheapest option compared to other storage options, such as a home battery, a heat pump boiler, and a solar boiler. A sensitivity study demonstrated that these results are overall robust. Furthermore, the WaterAccu has a positive societal impact owing to its peak shaving potential. Further research should focus on the potential of the technology to decrease grid congestion when implemented on a neighborhood scale.

Suggested Citation

  • Ivar Kotte & Emma Snaak & Wilfried van Sark, 2024. "Storing Excess Solar Power in Hot Water on Household Level as Power-to-Heat System," Energies, MDPI, vol. 17(20), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5154-:d:1500113
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/20/5154/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/20/5154/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Beccali, Marco & Bonomolo, Marina & Martorana, Francesca & Catrini, Pietro & Buscemi, Alessandro, 2022. "Electrical hybrid heat pumps assisted by natural gas boilers: a review," Applied Energy, Elsevier, vol. 322(C).
    2. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 212, pages 1611-1626.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Guibert, Paul & Shirizadeh, Behrang & Quirion, Philippe, 2020. "Variable time-step: A method for improving computational tractability for energy system models with long-term storage," Energy, Elsevier, vol. 213(C).
    2. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    5. Sihvonen, Ville & Ollila, Iisa & Jaanto, Jasmin & Grönman, Aki & Honkapuro, Samuli & Riikonen, Juhani & Price, Alisdair, 2024. "Role of power-to-heat and thermal energy storage in decarbonization of district heating," Energy, Elsevier, vol. 305(C).
    6. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    7. Vassilis M. Charitopoulos & Mathilde Fajardy & Chi Kong Chyong & David M. Reiner, 2022. "The case of 100% electrification of domestic heat in Great Britain," Working Papers EPRG2206, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    8. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    9. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
    10. Sara Bellocchi & Michele Manno & Michel Noussan & Michela Vellini, 2019. "Impact of Grid-Scale Electricity Storage and Electric Vehicles on Renewable Energy Penetration: A Case Study for Italy," Energies, MDPI, vol. 12(7), pages 1-32, April.
    11. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    12. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    13. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    14. Minjae Son & Minsoo Kim & Hongseok Kim, 2023. "Sector Coupling and Migration towards Carbon-Neutral Power Systems," Energies, MDPI, vol. 16(4), pages 1-12, February.
    15. Els van der Roest & Stijn Beernink & Niels Hartog & Jan Peter van der Hoek & Martin Bloemendal, 2021. "Towards Sustainable Heat Supply with Decentralized Multi-Energy Systems by Integration of Subsurface Seasonal Heat Storage," Energies, MDPI, vol. 14(23), pages 1-31, November.
    16. Odland, Severin & Rhodes, Ekaterina & Corbett, Meghan & Pardy, Aaron, 2023. "What policies do homeowners prefer for building decarbonization and why? An exploration of climate policy support in Canada," Energy Policy, Elsevier, vol. 173(C).
    17. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    18. Vicente Gutiérrez González & Germán Ramos Ruiz & Carlos Fernández Bandera, 2021. "Impact of Actual Weather Datasets for Calibrating White-Box Building Energy Models Base on Monitored Data," Energies, MDPI, vol. 14(4), pages 1-16, February.
    19. Hou, Hui & Xu, Tao & Wu, Xixiu & Wang, Huan & Tang, Aihong & Chen, Yangyang, 2020. "Optimal capacity configuration of the wind-photovoltaic-storage hybrid power system based on gravity energy storage system," Applied Energy, Elsevier, vol. 271(C).
    20. Haas, Reinhard & Duic, Neven & Auer, Hans & Ajanovic, Amela & Ramsebner, Jasmine & Knapek, Jaroslav & Zwickl-Bernhard, Sebastian, 2023. "The photovoltaic revolution is on: How it will change the electricity system in a lasting way," Energy, Elsevier, vol. 265(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5154-:d:1500113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.