IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i20p5149-d1500057.html
   My bibliography  Save this article

Bionic Strategies for Pump Anti-Cavitation: A Comprehensive Review

Author

Listed:
  • Jian Li

    (College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China)

  • Xing Zhou

    (College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China)

  • Hongbo Zhao

    (College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China)

  • Chengqi Mou

    (Institute of Process Equipment, Zhejiang University, Hangzhou 310027, China)

  • Long Meng

    (Key Laboratory of River Basin Digital Twinning of Ministry of Water Resources, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Liping Sun

    (China Energy Technology and Economics Research Institute, China Energy Investment Corporation Ltd., Beijing 102211, China)

  • Peijian Zhou

    (College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China)

Abstract

The cavitation phenomenon presents a significant challenge in pump operation since the losses incurred by cavitation adversely impact pump performance. The many constraints of conventional anti-cavitation techniques have compelled researchers to explore biological processes for innovative alternatives. Consequently, the use of bionanotechnology for anti-cavitation pumping has emerged as a prominent study domain. Despite the extensive publication of publications on biomimetic technology, research concerning the use of anti-cavitation in pumps remains scarce. This review comprehensively summarizes, for the first time, the advancements and applications of bionic structures, bionic surface texture design, and bionic materials in pump anti-cavitation, addressing critical aspects such as blade leading-edge bionic structures, bionic worm shells, microscopic bionic textures, and innovative bionic coatings. Bionic technology may significantly reduce cavitation erosion and improve pump performance by emulating natural biological structures. This research elucidates the creative contributions of biomimetic designs and their anti-cavitation effects, hence boosting the anti-cavitation performance of pumps. This work integrates practical requirements and anticipates future applications of bionic technology in pump anti-cavitation, offering a significant research direction and reference for scholars in this domain.

Suggested Citation

  • Jian Li & Xing Zhou & Hongbo Zhao & Chengqi Mou & Long Meng & Liping Sun & Peijian Zhou, 2024. "Bionic Strategies for Pump Anti-Cavitation: A Comprehensive Review," Energies, MDPI, vol. 17(20), pages 1-25, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5149-:d:1500057
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/20/5149/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/20/5149/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jing Dong & Zhongdong Qian & Biraj Singh Thapa & Bhola Thapa & Zhiwei Guo, 2019. "Alternative Design of Double-Suction Centrifugal Pump to Reduce the Effects of Silt Erosion," Energies, MDPI, vol. 12(1), pages 1-22, January.
    2. Kan, Kan & Binama, Maxime & Chen, Huixiang & Zheng, Yuan & Zhou, Daqing & Su, Wentao & Muhirwa, Alexis, 2022. "Pump as turbine cavitation performance for both conventional and reverse operating modes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Ziwen & Yuan, Yichen & He, Mengjiao & Jurasz, Jakub & Wang, Jianan & Egusquiza, Mònica & Egusquiza, Eduard & Xu, Beibei & Chen, Diyi, 2022. "Stability and efficiency performance of pumped hydro energy storage system for higher flexibility," Renewable Energy, Elsevier, vol. 199(C), pages 1482-1494.
    2. Song, Xijie & Luo, Yongyao & Wang, Zhengwei, 2024. "Mechanism of the influence of sand on the energy dissipation inside the hydraulic turbine under sediment erosion condition," Energy, Elsevier, vol. 294(C).
    3. Xu, Zhe & Zheng, Yuan & Kan, Kan & Chen, Huixiang, 2023. "Flow instability and energy performance of a coastal axial-flow pump as turbine under the influence of upstream waves," Energy, Elsevier, vol. 272(C).
    4. Wang, Tao & Yu, He & Xiang, Ru & Chen, XiaoMing & Zhang, Xiang, 2023. "Performance and unsteady flow characteristic of forward-curved impeller with different blade inlet swept angles in a pump as turbine," Energy, Elsevier, vol. 282(C).
    5. Calvin Stephen & Biswajit Basu & Aonghus McNabola, 2024. "Detection of Cavitation in a Centrifugal Pump-as-Turbine Using Time-Domain-Based Analysis of Vibration Signals," Energies, MDPI, vol. 17(11), pages 1-18, May.
    6. Jin, Faye & Luo, Yongyao & Zhao, Qiang & Cao, Jiali & Wang, Zhengwei, 2023. "Energy loss analysis of transition simulation for a prototype reversible pump turbine during load rejection process," Energy, Elsevier, vol. 284(C).
    7. Xu, Jian & Wang, Longyan & Luo, Zhaohui & Wang, Zilu & Zhang, Bowen & Yuan, Jianping & Tan, Andy C.C., 2024. "Deep learning enhanced fluid-structure interaction analysis for composite tidal turbine blades," Energy, Elsevier, vol. 296(C).
    8. Ma, Weichao & Zhao, Zhigao & Yang, Jiebin & Lai, Xu & Liu, Chengpeng & Yang, Jiandong, 2024. "A transient analysis framework for hydropower generating systems under parameter uncertainty by integrating physics-based and data-driven models," Energy, Elsevier, vol. 297(C).
    9. Bai, Yang & Zhu, Qianming & Huang, Diangui, 2024. "Numerical simulation of wave-number effects on the performance of traveling wave pump-turbine in turbine mode," Renewable Energy, Elsevier, vol. 229(C).
    10. Yan, Xiaotong & Kan, Kan & Zheng, Yuan & Xu, Zhe & Rossi, Mosè & Xu, Lianchen & Chen, Huixiang, 2024. "The vortex dynamics characteristics in a pump-turbine: A rigid vorticity analysis while varying guide vane openings in turbine mode," Energy, Elsevier, vol. 289(C).
    11. Xiaodong Wang & Yunliang Chen & Mengqiu Li & Yong Xu & Bo Wang & Xiaoqiang Dang, 2020. "Numerical Study on the Working Performance of a Streamlined Annular Jet Pump," Energies, MDPI, vol. 13(17), pages 1-15, August.
    12. Balacco, Gabriella & Fiorese, Gaetano Daniele & Alfio, Maria Rosaria & Totaro, Vincenzo & Binetti, Mario & Torresi, Marco & Stefanizzi, Michele, 2023. "PaT-ID: A tool for the selection of the optimal pump as turbine for a water distribution network," Energy, Elsevier, vol. 282(C).
    13. Yixiao Zhang & Eddie Yin Kwee Ng & Shivansh Mittal, 2023. "The Biffis Canal Hydrodynamic System Performance Study of Drag-Dominant Tidal Turbine Using Moment Balancing Method," Sustainability, MDPI, vol. 15(19), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5149-:d:1500057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.