IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i19p4807-d1485788.html
   My bibliography  Save this article

Artificial-Intelligence-Based Detection of Defects and Faults in Photovoltaic Systems: A Survey

Author

Listed:
  • Ali Thakfan

    (Joint Master’s Program in Renewable Energy, Deanship of Graduate Studies, King Saud University, Riyadh 11473, Saudi Arabia
    Sustainable Energy Technologies Center, King Saud University, Riyadh 11421, Saudi Arabia)

  • Yasser Bin Salamah

    (Department of Electrical Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

Abstract

The global shift towards sustainable energy has positioned photovoltaic (PV) systems as a critical component in the renewable energy landscape. However, maintaining the efficiency and longevity of these systems requires effective fault detection and diagnosis mechanisms. Traditional methods, relying on manual inspections and standard electrical measurements, have proven inadequate, especially for large-scale solar installations. The emergence of machine learning (ML) and deep learning (DL) has sparked significant interest in developing computational strategies to enhance the identification and classification of PV system faults. Despite these advancements, challenges remain, particularly due to the limited availability of public datasets for PV fault detection and the complexity of existing artificial-intelligence (AI)-based methods. This study distinguishes itself by proposing a novel AI-based approach that optimizes fault detection and classification in PV systems, addressing existing gaps in AI-driven fault detection, especially in terms of thermal imaging and current–voltage (I-V) curve analysis. This comprehensive survey identifies emerging trends in AI-driven PV fault detection, highlights the most advanced methodologies, and proposes a novel AI-based approach to enhance fault detection and classification capabilities. The findings aim to advance the state of technology in this field, offering insights into more efficient and practical solutions for PV system fault management.

Suggested Citation

  • Ali Thakfan & Yasser Bin Salamah, 2024. "Artificial-Intelligence-Based Detection of Defects and Faults in Photovoltaic Systems: A Survey," Energies, MDPI, vol. 17(19), pages 1-23, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4807-:d:1485788
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/19/4807/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/19/4807/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huerta Herraiz, Álvaro & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2020. "Photovoltaic plant condition monitoring using thermal images analysis by convolutional neural network-based structure," Renewable Energy, Elsevier, vol. 153(C), pages 334-348.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Segovia Ramírez, Isaac & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2022. "A novel approach to optimize the positioning and measurement parameters in photovoltaic aerial inspections," Renewable Energy, Elsevier, vol. 187(C), pages 371-389.
    2. Rediske, Graciele & Michels, Leandro & Siluk, Julio Cezar Mairesse & Rigo, Paula Donaduzzi & Rosa, Carmen Brum & Lima, Andrei Cunha, 2024. "A proposed set of indicators for evaluating the performance of the operation and maintenance of photovoltaic plants," Applied Energy, Elsevier, vol. 354(PA).
    3. Cheng Yang & Fuhao Sun & Yujie Zou & Zhipeng Lv & Liang Xue & Chao Jiang & Shuangyu Liu & Bochao Zhao & Haoyang Cui, 2024. "A Survey of Photovoltaic Panel Overlay and Fault Detection Methods," Energies, MDPI, vol. 17(4), pages 1-37, February.
    4. Fonseca Alves, Ricardo Henrique & Deus Júnior, Getúlio Antero de & Marra, Enes Gonçalves & Lemos, Rodrigo Pinto, 2021. "Automatic fault classification in photovoltaic modules using Convolutional Neural Networks," Renewable Energy, Elsevier, vol. 179(C), pages 502-516.
    5. Li, B. & Delpha, C. & Diallo, D. & Migan-Dubois, A., 2021. "Application of Artificial Neural Networks to photovoltaic fault detection and diagnosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    6. Guilherme Souza & Ricardo Santos & Erlandson Saraiva, 2022. "A Log-Logistic Predictor for Power Generation in Photovoltaic Systems," Energies, MDPI, vol. 15(16), pages 1-16, August.
    7. Chen, Qi & Li, Xinyuan & Zhang, Zhengjia & Zhou, Chao & Guo, Zhiling & Liu, Zhengguang & Zhang, Haoran, 2023. "Remote sensing of photovoltaic scenarios: Techniques, applications and future directions," Applied Energy, Elsevier, vol. 333(C).
    8. Lappalainen, Kari & Piliougine, Michel & Valkealahti, Seppo & Spagnuolo, Giovanni, 2024. "Photovoltaic module series resistance identification at its maximum power production," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 224(PA), pages 50-62.
    9. Du, Bin & Lund, Peter D. & Wang, Jun, 2021. "Combining CFD and artificial neural network techniques to predict the thermal performance of all-glass straight evacuated tube solar collector," Energy, Elsevier, vol. 220(C).
    10. Gabriella-Stefánia Szabó & Róbert Szabó & Loránd Szabó, 2022. "A Review of the Mitigating Methods against the Energy Conversion Decrease in Solar Panels," Energies, MDPI, vol. 15(18), pages 1-21, September.
    11. Yang, Xiyun & Zhang, Yanfeng & Lv, Wei & Wang, Dong, 2021. "Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier," Renewable Energy, Elsevier, vol. 163(C), pages 386-397.
    12. Wei-Hsiang Chiang & Han-Sheng Wu & Jong-Shinn Wu & Shiow-Jyu Lin, 2022. "A Method for Estimating On-Field Photovoltaics System Efficiency Using Thermal Imaging and Weather Instrument Data and an Unmanned Aerial Vehicle," Energies, MDPI, vol. 15(16), pages 1-12, August.
    13. Di Tommaso, Antonio & Betti, Alessandro & Fontanelli, Giacomo & Michelozzi, Benedetto, 2022. "A multi-stage model based on YOLOv3 for defect detection in PV panels based on IR and visible imaging by unmanned aerial vehicle," Renewable Energy, Elsevier, vol. 193(C), pages 941-962.
    14. Qamar Navid & Ahmed Hassan & Abbas Ahmad Fardoun & Rashad Ramzan, 2020. "An Online Novel Two-Layered Photovoltaic Fault Monitoring Technique Based Upon the Thermal Signatures," Sustainability, MDPI, vol. 12(22), pages 1-13, November.
    15. Faris E. Alfaris & Essam A. Al-Ammar & Ghazi A. Ghazi & Ahmed A. AL-Katheri, 2024. "A Cost-Effective Fault Diagnosis and Localization Approach for Utility-Scale PV Systems Using Limited Number of Sensors," Sustainability, MDPI, vol. 16(15), pages 1-25, July.
    16. Qu, Jiaqi & Qian, Zheng & Pei, Yan & Wei, Lu & Zareipour, Hamidreza & Sun, Qiang, 2022. "An unsupervised hourly weather status pattern recognition and blending fitting model for PV system fault detection," Applied Energy, Elsevier, vol. 319(C).
    17. Waqar Akram, M. & Li, Guiqiang & Jin, Yi & Chen, Xiao, 2022. "Failures of Photovoltaic modules and their Detection: A Review," Applied Energy, Elsevier, vol. 313(C).
    18. Peinado Gonzalo, Alfredo & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2020. "Survey of maintenance management for photovoltaic power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4807-:d:1485788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.