IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i19p4799-d1485605.html
   My bibliography  Save this article

Characteristics of SO 2 Removal and Heat Recovery of Flue Gas Based on a Hybrid Flue Gas Condenser

Author

Listed:
  • Hyeonrok Choi

    (Research Institute of Sustainable Development Technology, Korea Institute of Industrial Technology, Cheonan 30156, Republic of Korea
    School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea)

  • Won Yang

    (Research Institute of Sustainable Development Technology, Korea Institute of Industrial Technology, Cheonan 30156, Republic of Korea)

  • Yongwoon Lee

    (Research Institute of Sustainable Development Technology, Korea Institute of Industrial Technology, Cheonan 30156, Republic of Korea)

  • Changkook Ryu

    (School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea)

Abstract

A flue gas condenser (FGC) system recovers heat from exhaust flue gases in energy production and chemical plants, reducing air pollution due to dust, SOx, and HCl. An FGC system is divided into indirect contact condenser (ICC) and direct contact condenser (DCC) types. In an ICC, the exhaust gases do not mix with the working fluid, and a water film is formed during flue gas condensation for partial SOx removal. In a DCC, direct mixing of the exhaust flue gas with the cooling fluid (mainly water) occurs, with simultaneous absorption of SOx. In this study, we investigated the SO 2 removal efficiency and heat recovery of an ICC, a DCC, and a DCC–ICC hybrid system, and compared the results of the hybrid system with those obtained for a single DCC type at the same liquid-to-gas (L/G) ratio. The SO 2 removal characteristics of the hybrid system were examined based on the L/G ratio and absorbent-to-SO 2 molar ratio. In the reference ICC-type FGC system, the exit temperature of the mixed gas was 28 °C, with the condensed water ratio and heat recovery efficiency being 80.9% and 93.4%, respectively. At an L/G ratio of 1.5–3.5, the SO 2 removal efficiency of a single DCC was 31.5–65.9%, whereas that of the hybrid FGC system (with packing material) increased from 47.1% to 72.3%, which further increased to ~90% upon the addition of NaOH at a molar ratio of 0.7 and an L/G ratio of 1.5.

Suggested Citation

  • Hyeonrok Choi & Won Yang & Yongwoon Lee & Changkook Ryu, 2024. "Characteristics of SO 2 Removal and Heat Recovery of Flue Gas Based on a Hybrid Flue Gas Condenser," Energies, MDPI, vol. 17(19), pages 1-12, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4799-:d:1485605
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/19/4799/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/19/4799/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cui, Lin & Song, Xiangda & Li, Yuzhong & Wang, Yang & Feng, Yupeng & Yan, Lifan & Dong, Yong, 2018. "Synergistic capture of fine particles in wet flue gas through cooling and condensation," Applied Energy, Elsevier, vol. 225(C), pages 656-667.
    2. Le Zhang & Huixing Zhai & Jiayuan He & Fan Yang & Suilin Wang, 2022. "Application of Exergy Analysis in Flue Gas Condensation Waste Heat Recovery System Evaluation," Energies, MDPI, vol. 15(20), pages 1-12, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoud Khaled & Mostafa Mortada & Jalal Faraj & Khaled Chahine & Thierry Lemenand & Haitham S. Ramadan, 2022. "Effect of Airflow Non-Uniformities on the Thermal Performance of Water–Air Heat Exchangers—Experimental Study and Analysis," Energies, MDPI, vol. 15(21), pages 1-14, October.
    2. Feng, Yupeng & Li, Yuzhong & Cui, Lin & Yan, Lifan & Zhao, Cheng & Dong, Yong, 2019. "Cold condensing scrubbing method for fine particle reduction from saturated flue gas," Energy, Elsevier, vol. 171(C), pages 1193-1205.
    3. Camilo Andrés Guerrero-Martin & Juan Sebastián Fernández-Ramírez & Jaime Eduardo Arturo-Calvache & Harvey Andrés Milquez-Sanabria & Fernando Antonio da Silva Fernandes & Vando José Costa Gomes & Wanes, 2023. "Exergy Load Distribution Analysis Applied to the Dehydration of Ethanol by Extractive Distillation," Energies, MDPI, vol. 16(8), pages 1-14, April.
    4. Men, Yiyu & Liu, Xiaohua & Zhang, Tao, 2020. "Analytical solutions of heat and mass transfer process in combined gas-water heat exchanger applied for waste heat recovery," Energy, Elsevier, vol. 206(C).
    5. Pérez-Orozco, Raquel & Patiño, David & Porteiro, Jacobo & Míguez, José Luis, 2020. "Bed cooling effects in solid particulate matter emissions during biomass combustion. A morphological insight," Energy, Elsevier, vol. 205(C).
    6. Pei, Ting & Ma, Suxia & Zhao, Guanjia & Song, Guanqiang & Wang, Peng & Mi, Chenfeng, 2023. "Improving the removal of SO3 aerosol by combining flue gas condensation and alkali spray," Energy, Elsevier, vol. 272(C).
    7. Cui, Haijiao & Li, Nianping & Peng, Jinqing & Yin, Rongxin & Li, Jingming & Wu, Zhibin, 2018. "Investigation on the thermal performance of a novel spray tower with upward spraying and downward gas flow," Applied Energy, Elsevier, vol. 231(C), pages 12-21.
    8. Li, Zhaohao & Mi, Dabin & Zhang, Heng & Chen, Haiping & Liu, Zhenghao & Gao, Dan, 2021. "Experimental study on synergistic capture of fine particles and waste heat from flue gas using membrane condenser," Energy, Elsevier, vol. 217(C).
    9. Janis Kramens & Oskars Svedovs & Amanda Sturmane & Edgars Vigants & Vladimirs Kirsanovs & Dagnija Blumberga, 2024. "Exploring Energy Security and Independence for Small Energy Users: A Latvian Case Study on Unleashing Stirling Engine Potential," Sustainability, MDPI, vol. 16(3), pages 1-27, January.
    10. Runchen Wang & Xiaonan Du & Yuetao Shi & Yuhao Wang & Fengzhong Sun, 2023. "An Ejector and Flashbox-Integrated Approach to Flue Gas Waste Heat Recovery: A Novel Systematic Study," Energies, MDPI, vol. 16(22), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4799-:d:1485605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.