IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i18p4658-d1480459.html
   My bibliography  Save this article

Research on Energy-Saving Control Strategies for Single-Effect Absorption Refrigeration Systems

Author

Listed:
  • Zhenchang Liu

    (School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
    Intelligent Manufacturing Institute, Tianjin Electronic Information College, Tianjin 300350, China)

  • Aiguo Wu

    (School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China)

  • Haitang Wen

    (School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China)

Abstract

The automatic control device is a critical component of absorption refrigeration systems. Its functional enhancement can reduce operating costs, improve energy efficiency, and ensure long-term stable unit operation. Given that absorption refrigeration systems operate under various dynamic conditions, the rational design of control strategies is particularly important. This study analyzes the influence of changes in the cooling water and heat source water flow rates on the outlet temperature of chilled water in the unit based on the open-loop response characteristics of absorption refrigeration systems. It proposes a dual-loop energy-saving control strategy for single-effect hot water lithium bromide absorption refrigeration systems based on the setpoint comprehensive optimization algorithm. Considering the multiple variables, strong coupling, large inertia, long time delay, and nonlinear characteristics of absorption refrigeration systems, as well as the difficulties in modeling these systems, this study applies a model-free adaptive control algorithm to the system’s control. It derives both SISO and MIMO model-free control algorithms with time-delay components. Through simulations comparing MFAC, improved MFAC, and traditional PID control, the dual-loop energy-saving control strategy is demonstrated to effectively reduce system heat consumption by approximately 20%, decrease power consumption by about 10%, and enhance the system’s SCOP by approximately 19.3%.

Suggested Citation

  • Zhenchang Liu & Aiguo Wu & Haitang Wen, 2024. "Research on Energy-Saving Control Strategies for Single-Effect Absorption Refrigeration Systems," Energies, MDPI, vol. 17(18), pages 1-25, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4658-:d:1480459
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/18/4658/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/18/4658/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Labus, J. & Hernández, J.A. & Bruno, J.C. & Coronas, A., 2012. "Inverse neural network based control strategy for absorption chillers," Renewable Energy, Elsevier, vol. 39(1), pages 471-482.
    2. Mendiburu, Andrés Z. & Roberts, Justo J. & Rodrigues, Letícia Jenisch & Verma, Sujit Kr, 2023. "Thermodynamic modelling for absorption refrigeration cycles powered by solar energy and a case study for Porto Alegre, Brazil," Energy, Elsevier, vol. 266(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lazrak, Amine & Boudehenn, François & Bonnot, Sylvain & Fraisse, Gilles & Leconte, Antoine & Papillon, Philippe & Souyri, Bernard, 2016. "Development of a dynamic artificial neural network model of an absorption chiller and its experimental validation," Renewable Energy, Elsevier, vol. 86(C), pages 1009-1022.
    2. Tomasz Halon & Ewa Pelinska-Olko & Malgorzata Szyc & Bartosz Zajaczkowski, 2019. "Predicting Performance of a District Heat Powered Adsorption Chiller by Means of an Artificial Neural Network," Energies, MDPI, vol. 12(17), pages 1-11, August.
    3. Hai, Tao & Zoghi, Mohammad & Habibi, Hamed, 2023. "Comparison between two LiBr–H2O absorption-compression chillers and a simple absorption chiller driven by various solar collectors: Exergy-economic performance and optimization," Energy, Elsevier, vol. 282(C).
    4. Steen, David & Stadler, Michael & Cardoso, Gonçalo & Groissböck, Markus & DeForest, Nicholas & Marnay, Chris, 2015. "Modeling of thermal storage systems in MILP distributed energy resource models," Applied Energy, Elsevier, vol. 137(C), pages 782-792.
    5. Li, Deming & Deng, Zilong & Zhang, Chengbin, 2024. "Thermodynamic process control of compression-assisted absorption refrigeration using ocean thermal energy," Renewable Energy, Elsevier, vol. 222(C).
    6. Lubis, Arnas & Jeong, Jongsoo & Giannetti, Niccolo & Yamaguchi, Seiichi & Saito, Kiyoshi & Yabase, Hajime & Alhamid, Muhammad I. & Nasruddin,, 2018. "Operation performance enhancement of single-double-effect absorption chiller," Applied Energy, Elsevier, vol. 219(C), pages 299-311.
    7. Cabrera, F.J. & Fernández-García, A. & Silva, R.M.P. & Pérez-García, M., 2013. "Use of parabolic trough solar collectors for solar refrigeration and air-conditioning applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 103-118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4658-:d:1480459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.