IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i18p4619-d1478426.html
   My bibliography  Save this article

Independent Pitch Adaptive Control of Large Wind Turbines Using State Feedback and Disturbance Accommodating Control

Author

Listed:
  • Yingming Liu

    (School of Electrical Engineering, Shenyang University of Technology, Liao Shen West Road 111, Shenyang 110027, China)

  • Yi Wang

    (School of Electrical Engineering, Shenyang University of Technology, Liao Shen West Road 111, Shenyang 110027, China)

  • Xiaodong Wang

    (School of Electrical Engineering, Shenyang University of Technology, Liao Shen West Road 111, Shenyang 110027, China)

Abstract

Wind turbines experience significant unbalanced loads during operation, exacerbated by external disturbances that challenge the stability of the pitch control system and affect output power. This paper proposes an independent pitch adaptive control strategy integrating state feedback and disturbance accommodating control (DAC). Initially, nonlinear wind turbine dynamics are globally linearized, and DAC is applied to mitigate the impact of wind disturbances dynamically. Subsequently, the entire range of wind speeds is segmented, and controllers are individually designed to optimize gain settings according to specific control objectives at each wind speed interval. Scheduling parameters such as collective pitch angle and tower fore-aft displacement are identified and trained using Radial Basis Function Neural Networks (RBFNN). Finally, based on the output gain values determined by RBFNN, the full-state feedback controller group is adaptively adjusted, and the optimal controller is selected for the final output. Simulations conducted on the NREL 5MW reference wind turbine model using FAST and Simulink demonstrate that compared to the ROSCO controller, the proposed strategy ensures smoother output power and effectively reduces blade and tower loads, thereby extending the turbine’s operational lifespan.

Suggested Citation

  • Yingming Liu & Yi Wang & Xiaodong Wang, 2024. "Independent Pitch Adaptive Control of Large Wind Turbines Using State Feedback and Disturbance Accommodating Control," Energies, MDPI, vol. 17(18), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4619-:d:1478426
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/18/4619/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/18/4619/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xingqi Hu & Wen Tan & Guolian Hou, 2023. "PIDD2 Control of Large Wind Turbines’ Pitch Angle," Energies, MDPI, vol. 16(13), pages 1-22, July.
    2. Abhinandan Routray & Nitin Sivakumar & Sung-ho Hur & Deok-je Bang, 2023. "A Comparative Study of Optimal Individual Pitch Control Methods," Sustainability, MDPI, vol. 15(14), pages 1-25, July.
    3. Adrian Gambier, 2021. "Pitch Control of Three Bladed Large Wind Energy Converters—A Review," Energies, MDPI, vol. 14(23), pages 1-24, December.
    4. Novaes Menezes, Eduardo José & Araújo, Alex Maurício & Rohatgi, Janardan Singh & González del Foyo, Pedro Manuel, 2018. "Active load control of large wind turbines using state-space methods and disturbance accommodating control," Energy, Elsevier, vol. 150(C), pages 310-319.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumarasamy Palanimuthu & Ganesh Mayilsamy & Ameerkhan Abdul Basheer & Seong-Ryong Lee & Dongran Song & Young Hoon Joo, 2022. "A Review of Recent Aerodynamic Power Extraction Challenges in Coordinated Pitch, Yaw, and Torque Control of Large-Scale Wind Turbine Systems," Energies, MDPI, vol. 15(21), pages 1-27, November.
    2. Nejra Beganovic & Jackson G. Njiri & Dirk Söffker, 2018. "Reduction of Structural Loads in Wind Turbines Based on an Adapted Control Strategy Concerning Online Fatigue Damage Evaluation Models," Energies, MDPI, vol. 11(12), pages 1-15, December.
    3. Ramesh Kumar Behara & Akshay Kumar Saha, 2022. "Artificial Intelligence Control System Applied in Smart Grid Integrated Doubly Fed Induction Generator-Based Wind Turbine: A Review," Energies, MDPI, vol. 15(17), pages 1-56, September.
    4. Gonzalez Silva, Jean & Ferrari, Riccardo & van Wingerden, Jan-Willem, 2023. "Wind farm control for wake-loss compensation, thrust balancing and load-limiting of turbines," Renewable Energy, Elsevier, vol. 203(C), pages 421-433.
    5. Jingchun Chu & Ling Yuan & Yang Hu & Chenyang Pan & Lei Pan, 2019. "Comparative Analysis of Identification Methods for Mechanical Dynamics of Large-Scale Wind Turbine," Energies, MDPI, vol. 12(18), pages 1-24, September.
    6. Chae-Wook Lim, 2024. "A Study of a Gain-Scheduled Individual Pitch Controller for an NREL 5 MW Wind Turbine," Energies, MDPI, vol. 17(1), pages 1-12, January.
    7. Moodi, Hoda & Bustan, Danyal, 2019. "Wind turbine control using T-S systems with nonlinear consequent parts," Energy, Elsevier, vol. 172(C), pages 922-931.
    8. Gao, Xiaoxia & Zhang, Shaohai & Li, Luqing & Xu, Shinai & Chen, Yao & Zhu, Xiaoxun & Sun, Haiying & Wang, Yu & Lu, Hao, 2022. "Quantification of 3D spatiotemporal inhomogeneity for wake characteristics with validations from field measurement and wind tunnel test," Energy, Elsevier, vol. 254(PA).
    9. Dai, Juchuan & Li, Mimi & Zhang, Fan & Zeng, Huifan, 2024. "Field load testing of wind turbines based on the relational model of strain vs load," Renewable Energy, Elsevier, vol. 221(C).
    10. Raja M. Imran & D. M. Akbar Hussain & Bhawani Shanker Chowdhry, 2018. "Parameterized Disturbance Observer Based Controller to Reduce Cyclic Loads of Wind Turbine," Energies, MDPI, vol. 11(5), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4619-:d:1478426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.