An Integrated CEEMDAN to Optimize Deep Long Short-Term Memory Model for Wind Speed Forecasting
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Shahid, Farah & Zameer, Aneela & Mehmood, Ammara & Raja, Muhammad Asif Zahoor, 2020. "A novel wavenets long short term memory paradigm for wind power prediction," Applied Energy, Elsevier, vol. 269(C).
- Du, Pei & Yang, Dongchuan & Li, Yanzhao & Wang, Jianzhou, 2024. "An innovative interpretable combined learning model for wind speed forecasting," Applied Energy, Elsevier, vol. 358(C).
- Yang, Dongchuan & Li, Mingzhu & Guo, Ju-e & Du, Pei, 2024. "An attention-based multi-input LSTM with sliding window-based two-stage decomposition for wind speed forecasting," Applied Energy, Elsevier, vol. 375(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
- Yang, Mao & Wang, Da & Zhang, Wei & Yv, Xinnan, 2024. "A centralized power prediction method for large-scale wind power clusters based on dynamic graph neural network," Energy, Elsevier, vol. 310(C).
- Wu, Han & Du, Pei, 2024. "Dual-stream transformer-attention fusion network for short-term carbon price prediction," Energy, Elsevier, vol. 311(C).
- Chen, Chunyu & Cui, Mingjian & Fang, Xin & Ren, Bixing & Chen, Yang, 2020. "Load altering attack-tolerant defense strategy for load frequency control system," Applied Energy, Elsevier, vol. 280(C).
- Shahid, Farah & Zameer, Aneela & Muneeb, Muhammad, 2020. "Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Sabir, Zulqurnain & Saoud, Sahar & Raja, Muhammad Asif Zahoor & Wahab, Hafiz Abdul & Arbi, Adnène, 2020. "Heuristic computing technique for numerical solutions of nonlinear fourth order Emden–Fowler equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 534-548.
- Guanjun Liu & Chao Wang & Hui Qin & Jialong Fu & Qin Shen, 2022. "A Novel Hybrid Machine Learning Model for Wind Speed Probabilistic Forecasting," Energies, MDPI, vol. 15(19), pages 1-16, September.
- Yang, Zihao & Dong, Sheng, 2023. "A novel decomposition-based approach for non-stationary hub-height wind speed modelling," Energy, Elsevier, vol. 283(C).
- Ana Lagos & Joaquín E. Caicedo & Gustavo Coria & Andrés Romero Quete & Maximiliano Martínez & Gastón Suvire & Jesús Riquelme, 2022. "State-of-the-Art Using Bibliometric Analysis of Wind-Speed and -Power Forecasting Methods Applied in Power Systems," Energies, MDPI, vol. 15(18), pages 1-40, September.
- Sabir, Zulqurnain & Raja, Muhammad Asif Zahoor & Wahab, Hafiz Abdul & Altamirano, Gilder Cieza & Zhang, Yu-Dong & Le, Dac-Nhuong, 2021. "Integrated intelligence of neuro-evolution with sequential quadratic programming for second-order Lane–Emden pantograph models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 87-101.
- Yang, Dongchuan & Li, Mingzhu & Guo, Ju-e & Du, Pei, 2024. "An attention-based multi-input LSTM with sliding window-based two-stage decomposition for wind speed forecasting," Applied Energy, Elsevier, vol. 375(C).
- Bao-Jian Li & Guo-Liang Sun & Yan Liu & Wen-Chuan Wang & Xu-Dong Huang, 2022. "Monthly Runoff Forecasting Using Variational Mode Decomposition Coupled with Gray Wolf Optimizer-Based Long Short-term Memory Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2095-2115, April.
- Xu, Xuefang & Hu, Shiting & Shi, Peiming & Shao, Huaishuang & Li, Ruixiong & Li, Zhi, 2023. "Natural phase space reconstruction-based broad learning system for short-term wind speed prediction: Case studies of an offshore wind farm," Energy, Elsevier, vol. 262(PA).
- Ding, Jun-Wei & Chuang, Ming-Ju & Tseng, Jing-Siou & Hsieh, I-Yun Lisa, 2024. "Reanalysis and Ground Station data: Advanced data preprocessing in deep learning for wind power prediction," Applied Energy, Elsevier, vol. 375(C).
- Lin, Shengmao & Wang, Shu & Xu, Xuefang & Li, Ruixiong & Shi, Peiming, 2024. "GAOformer: An adaptive spatiotemporal feature fusion transformer utilizing GAT and optimizable graph matrixes for offshore wind speed prediction," Energy, Elsevier, vol. 292(C).
- Zhong, Lingshu & Wu, Pan & Pei, Mingyang, 2024. "Wind power generation prediction during the COVID-19 epidemic based on novel hybrid deep learning techniques," Renewable Energy, Elsevier, vol. 222(C).
- Sabir, Zulqurnain & Raja, Muhammad Asif Zahoor & Khalique, Chaudry Masood & Unlu, Canan, 2021. "Neuro-evolution computing for nonlinear multi-singular system of third order Emden–Fowler equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 799-812.
- Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.
- Mahmoodi, Kumars & Nepomuceno, Erivelton & Razminia, Abolhassan, 2022. "Wave excitation force forecasting using neural networks," Energy, Elsevier, vol. 247(C).
- Ye, Lin & Dai, Binhua & Li, Zhuo & Pei, Ming & Zhao, Yongning & Lu, Peng, 2022. "An ensemble method for short-term wind power prediction considering error correction strategy," Applied Energy, Elsevier, vol. 322(C).
More about this item
Keywords
wind speed forecasting; complete ensemble empirical mode decomposition; long short-term memory; time series forecasting;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4615-:d:1478321. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.