IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i18p4615-d1478321.html
   My bibliography  Save this article

An Integrated CEEMDAN to Optimize Deep Long Short-Term Memory Model for Wind Speed Forecasting

Author

Listed:
  • Yingying He

    (School of Computer Engineering, Chongqing College of Humanities, Science & Technology, Chongqing 401524, China
    Research Center for Big Data and Network Information Security Engineering Technology, Chongqing College of Humanities, Science & Technology, Chongqing 401524, China)

  • Likai Zhang

    (School of Civil Engineering, Chongqing University, Chongqing 400045, China)

  • Tengda Guan

    (School of Civil Engineering, Chongqing University, Chongqing 400045, China)

  • Zheyu Zhang

    (School of Civil Engineering, Chongqing University, Chongqing 400045, China)

Abstract

Accurate wind speed forecasting is crucial for the efficient operation of renewable energy platforms, such as wind turbines, as it facilitates more effective management of power output and maintains grid reliability and stability. However, the inherent variability and intermittency of wind speed present significant challenges for achieving precise forecasts. To address these challenges, this study proposes a novel method based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) and a deep learning-based Long Short-Term Memory (LSTM) network for wind speed forecasting. In the proposed method, CEEMDAN is utilized to decompose the original wind speed signal into different modes to capture the multiscale temporal properties and patterns of wind speeds. Subsequently, LSTM is employed to predict each subseries derived from the CEEMDAN process. These individual subseries predictions are then combined to generate the overall final forecast. The proposed method is validated using real-world wind speed data from Austria and Almeria. Experimental results indicate that the proposed method achieves minimal mean absolute percentage errors of 0.3285 and 0.1455, outperforming other popular models across multiple performance criteria.

Suggested Citation

  • Yingying He & Likai Zhang & Tengda Guan & Zheyu Zhang, 2024. "An Integrated CEEMDAN to Optimize Deep Long Short-Term Memory Model for Wind Speed Forecasting," Energies, MDPI, vol. 17(18), pages 1-29, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4615-:d:1478321
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/18/4615/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/18/4615/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Du, Pei & Yang, Dongchuan & Li, Yanzhao & Wang, Jianzhou, 2024. "An innovative interpretable combined learning model for wind speed forecasting," Applied Energy, Elsevier, vol. 358(C).
    2. Shahid, Farah & Zameer, Aneela & Mehmood, Ammara & Raja, Muhammad Asif Zahoor, 2020. "A novel wavenets long short term memory paradigm for wind power prediction," Applied Energy, Elsevier, vol. 269(C).
    3. Yang, Dongchuan & Li, Mingzhu & Guo, Ju-e & Du, Pei, 2024. "An attention-based multi-input LSTM with sliding window-based two-stage decomposition for wind speed forecasting," Applied Energy, Elsevier, vol. 375(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    2. Manisha Sawant & Rupali Patil & Tanmay Shikhare & Shreyas Nagle & Sakshi Chavan & Shivang Negi & Neeraj Dhanraj Bokde, 2022. "A Selective Review on Recent Advancements in Long, Short and Ultra-Short-Term Wind Power Prediction," Energies, MDPI, vol. 15(21), pages 1-24, October.
    3. Farah, Shahid & David A, Wood & Humaira, Nisar & Aneela, Zameer & Steffen, Eger, 2022. "Short-term multi-hour ahead country-wide wind power prediction for Germany using gated recurrent unit deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Wang, Yonggang & Zhao, Kaixing & Hao, Yue & Yao, Yilin, 2024. "Short-term wind power prediction using a novel model based on butterfly optimization algorithm-variational mode decomposition-long short-term memory," Applied Energy, Elsevier, vol. 366(C).
    5. Chen, Chunyu & Cui, Mingjian & Fang, Xin & Ren, Bixing & Chen, Yang, 2020. "Load altering attack-tolerant defense strategy for load frequency control system," Applied Energy, Elsevier, vol. 280(C).
    6. Shahid, Farah & Zameer, Aneela & Muneeb, Muhammad, 2020. "Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    7. Sabir, Zulqurnain & Saoud, Sahar & Raja, Muhammad Asif Zahoor & Wahab, Hafiz Abdul & Arbi, Adnène, 2020. "Heuristic computing technique for numerical solutions of nonlinear fourth order Emden–Fowler equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 534-548.
    8. Zhengxuan Xiao & Fei Tang & Mengyuan Wang, 2023. "Wind Power Short-Term Forecasting Method Based on LSTM and Multiple Error Correction," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    9. Guanjun Liu & Chao Wang & Hui Qin & Jialong Fu & Qin Shen, 2022. "A Novel Hybrid Machine Learning Model for Wind Speed Probabilistic Forecasting," Energies, MDPI, vol. 15(19), pages 1-16, September.
    10. Xiaohan Huang & Aihua Jiang, 2022. "Wind Power Generation Forecast Based on Multi-Step Informer Network," Energies, MDPI, vol. 15(18), pages 1-17, September.
    11. Yang, Zihao & Dong, Sheng, 2023. "A novel decomposition-based approach for non-stationary hub-height wind speed modelling," Energy, Elsevier, vol. 283(C).
    12. Xu, Yan & Yu, Qi & Du, Pei & Wang, Jianzhou, 2024. "A paradigm shift in solar energy forecasting: A novel two-phase model for monthly residential consumption," Energy, Elsevier, vol. 305(C).
    13. Paweł Piotrowski & Dariusz Baczyński & Marcin Kopyt & Tomasz Gulczyński, 2022. "Advanced Ensemble Methods Using Machine Learning and Deep Learning for One-Day-Ahead Forecasts of Electric Energy Production in Wind Farms," Energies, MDPI, vol. 15(4), pages 1-30, February.
    14. Ana Lagos & Joaquín E. Caicedo & Gustavo Coria & Andrés Romero Quete & Maximiliano Martínez & Gastón Suvire & Jesús Riquelme, 2022. "State-of-the-Art Using Bibliometric Analysis of Wind-Speed and -Power Forecasting Methods Applied in Power Systems," Energies, MDPI, vol. 15(18), pages 1-40, September.
    15. Sabir, Zulqurnain & Raja, Muhammad Asif Zahoor & Wahab, Hafiz Abdul & Altamirano, Gilder Cieza & Zhang, Yu-Dong & Le, Dac-Nhuong, 2021. "Integrated intelligence of neuro-evolution with sequential quadratic programming for second-order Lane–Emden pantograph models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 87-101.
    16. Krishna Rayi, Vijaya & Mishra, S.P. & Naik, Jyotirmayee & Dash, P.K., 2022. "Adaptive VMD based optimized deep learning mixed kernel ELM autoencoder for single and multistep wind power forecasting," Energy, Elsevier, vol. 244(PA).
    17. Bao-Jian Li & Guo-Liang Sun & Yan Liu & Wen-Chuan Wang & Xu-Dong Huang, 2022. "Monthly Runoff Forecasting Using Variational Mode Decomposition Coupled with Gray Wolf Optimizer-Based Long Short-term Memory Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2095-2115, April.
    18. Xu, Xuefang & Hu, Shiting & Shi, Peiming & Shao, Huaishuang & Li, Ruixiong & Li, Zhi, 2023. "Natural phase space reconstruction-based broad learning system for short-term wind speed prediction: Case studies of an offshore wind farm," Energy, Elsevier, vol. 262(PA).
    19. Lin, Shengmao & Wang, Shu & Xu, Xuefang & Li, Ruixiong & Shi, Peiming, 2024. "GAOformer: An adaptive spatiotemporal feature fusion transformer utilizing GAT and optimizable graph matrixes for offshore wind speed prediction," Energy, Elsevier, vol. 292(C).
    20. Paweł Piotrowski & Marcin Kopyt & Dariusz Baczyński & Sylwester Robak & Tomasz Gulczyński, 2021. "Hybrid and Ensemble Methods of Two Days Ahead Forecasts of Electric Energy Production in a Small Wind Turbine," Energies, MDPI, vol. 14(5), pages 1-25, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4615-:d:1478321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.