IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i18p4602-d1477698.html
   My bibliography  Save this article

Hierarchical Structure-Based Wireless Active Balancing System for Power Batteries

Author

Listed:
  • Jia Xie

    (School of Electronics and Information Engineering, Hangzhou Dianzi University, Hangzhou 310005, China)

  • Huipin Lin

    (School of Electronics and Information Engineering, Hangzhou Dianzi University, Hangzhou 310005, China)

  • Jifeng Qu

    (School of Electronics and Information Engineering, Hangzhou Dianzi University, Hangzhou 310005, China)

  • Luhong Shi

    (Zhejiang Kangli Automation Technology Co., Ltd., Shaoxing 312500, China)

  • Zuhong Chen

    (Zhejiang Kangli Automation Technology Co., Ltd., Shaoxing 312500, China)

  • Sheng Chen

    (Zhejiang Jingsheng Microelectronics Co., Ltd., Shaoxing 312300, China)

  • Yong Zheng

    (Zhejiang Jingsheng Microelectronics Co., Ltd., Shaoxing 312300, China)

Abstract

This paper conducts an in-depth study of a wireless, hierarchical structure-based active balancing system for power batteries, aimed at addressing the rapid advancements in battery technology within the electric vehicle industry. The system is designed to enhance energy density and the reliability of the battery system, developing a balancing system capable of managing cells with significant disparities in characteristics, which is crucial for extending the lifespan of lithium-ion battery packs. The proposed system integrates wireless self-networking technology into the battery management system and adopts a more efficient active balancing approach, replacing traditional passive energy-consuming methods. In its design, inter-group balancing at the upper layer is achieved through a soft-switching LLC resonant converter, while intra-group balancing among individual cells at the lower layer is managed by an active balancing control IC and a bidirectional buck–boost converter. This configuration not only ensures precise control but also significantly enhances the speed and efficiency of balancing, effectively addressing the heat issues caused by energy dissipation. Key technologies involved include lithium-ion batteries, battery management systems, battery balancing systems, LLC resonant converters, and wireless self-networking technology. Tests have shown that this system not only reduces energy consumption but also significantly improves energy transfer efficiency and the overall balance of the battery pack, thereby extending battery life and optimizing vehicle performance, ensuring a safer and more reliable operation of electric vehicle battery systems.

Suggested Citation

  • Jia Xie & Huipin Lin & Jifeng Qu & Luhong Shi & Zuhong Chen & Sheng Chen & Yong Zheng, 2024. "Hierarchical Structure-Based Wireless Active Balancing System for Power Batteries," Energies, MDPI, vol. 17(18), pages 1-32, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4602-:d:1477698
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/18/4602/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/18/4602/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fan, Tian-E & Liu, Song-Ming & Yang, Hao & Li, Peng-Hua & Qu, Baihua, 2023. "A fast active balancing strategy based on model predictive control for lithium-ion battery packs," Energy, Elsevier, vol. 279(C).
    2. Siyi Tao & Bo Jiang & Xuezhe Wei & Haifeng Dai, 2023. "A Systematic and Comparative Study of Distinct Recurrent Neural Networks for Lithium-Ion Battery State-of-Charge Estimation in Electric Vehicles," Energies, MDPI, vol. 16(4), pages 1-17, February.
    3. Chun-Yu Liu & Yi-Hua Liu & Shun-Chung Wang & Zong-Zhen Yang & Song-Pei Ye, 2021. "An Adaptive Synchronous Rectification Driving Strategy for Bidirectional Full-Bridge LLC Resonant Converter," Energies, MDPI, vol. 14(8), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. An-Yeol Ko & Seong-Yun Kang & Il-Kuen Won & Junsin Yi & Chung-Yuen Won, 2022. "Development of a Resonant Auxiliary Power Supply Control Algorithm and Resonant Destruction Detecting for Railway Vehicles," Energies, MDPI, vol. 15(21), pages 1-21, October.
    2. Shaotong Qi & Yubo Cheng & Zhiyuan Li & Jiaxin Wang & Huaiyi Li & Chunwei Zhang, 2024. "Advanced Deep Learning Techniques for Battery Thermal Management in New Energy Vehicles," Energies, MDPI, vol. 17(16), pages 1-38, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4602-:d:1477698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.