IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i17p4392-d1469725.html
   My bibliography  Save this article

Assessment of the Impact of Direct Water Cooling and Cleaning System Operating Scenarios on PV Panel Performance

Author

Listed:
  • Krzysztof Sornek

    (Department of Sustainable Energy Development, Faculty of Energy and Fuels, AGH University of Krakow, Mickiewicza Av. 30, 30-059 Krakow, Poland)

Abstract

Among the various renewable energy-based technologies, photovoltaic panels are characterized by a high rate of development and application worldwide. Many efforts have been made to study innovative materials to improve the performance of photovoltaic cells. However, the most commonly used crystalline panels also have significant potential to enhance their energy yield by providing cooling and cleaning solutions. This paper discusses the possibility of introducing a dedicated direct-water cooling and cleaning system. As assumed, detailed schedules of the operation of the developed direct water cooling and cleaning system should be fitted to actual weather conditions. In this context, different cooling strategies were proposed and tested, including different intervals of opening and closing water flow. All tests were conducted using a dedicated experimental rig. 70 Wp monocrystalline panels were tested under laboratory conditions and 160 Wp polycrystalline panels were tested under real conditions. The results showed that introducing a scenario with a 1-min cooling and a 5-min break allowed for proving the panel’s surface temperature lower than 40 °C. In comparison, the temperature of the uncooled panel under the same operating conditions was close to 60 °C. Consequently, an increase in power generation was observed. The maximum power increase was observed in July and amounted to 15.3%. On the other hand, considering selected weeks in May, July, and September, the average increase in power generation was 3.63%, 7.48%, and 2.51%, respectively. It was concluded that the division of photovoltaic installation allows reasonable operating conditions for photovoltaic panels with a lower amount of energy consumed to power water pumps.

Suggested Citation

  • Krzysztof Sornek, 2024. "Assessment of the Impact of Direct Water Cooling and Cleaning System Operating Scenarios on PV Panel Performance," Energies, MDPI, vol. 17(17), pages 1-21, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4392-:d:1469725
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/17/4392/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/17/4392/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rodrigo, Pedro M. & Gutiérrez, Sebastián & Micheli, Leonardo & Fernández, Eduardo F. & Almonacid, Florencia, 2020. "Optimum cleaning schedule of photovoltaic systems based on levelised cost of energy and case study in central Mexico," MPRA Paper 104173, University Library of Munich, Germany.
    2. You, Siming & Lim, Yu Jie & Dai, Yanjun & Wang, Chi-Hwa, 2018. "On the temporal modelling of solar photovoltaic soiling: Energy and economic impacts in seven cities," Applied Energy, Elsevier, vol. 228(C), pages 1136-1146.
    3. Hernandez-Perez, J.G. & Carrillo, J.G. & Bassam, A. & Flota-Banuelos, M. & Patino-Lopez, L.D., 2020. "A new passive PV heatsink design to reduce efficiency losses: A computational and experimental evaluation," Renewable Energy, Elsevier, vol. 147(P1), pages 1209-1220.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Micheli, Leonardo & Theristis, Marios & Talavera, Diego L. & Almonacid, Florencia & Stein, Joshua S. & Fernández, Eduardo F., 2020. "Photovoltaic cleaning frequency optimization under different degradation rate patterns," Renewable Energy, Elsevier, vol. 166(C), pages 136-146.
    2. Micheli, Leonardo & Theristis, Marios & Talavera, Diego L. & Nofuentes, Gustavo & Stein, Joshua S. & Almonacid, Florencia & Fernández, Eduardo F., 2022. "The economic value of photovoltaic performance loss mitigation in electricity spot markets," Renewable Energy, Elsevier, vol. 199(C), pages 486-497.
    3. Azouzoute, Alae & Zitouni, Houssain & El Ydrissi, Massaab & Hajjaj, Charaf & Garoum, Mohammed & Bennouna, El Ghali & Ghennioui, Abdellatif, 2021. "Developing a cleaning strategy for hybrid solar plants PV/CSP: Case study for semi-arid climate," Energy, Elsevier, vol. 228(C).
    4. Sadat, Seyyed Ali & Hoex, Bram & Pearce, Joshua M., 2022. "A Review of the Effects of Haze on Solar Photovoltaic Performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Hanifi, Hamed & Pander, Matthias & Zeller, Ulli & Ilse, Klemens & Dassler, David & Mirza, Mark & Bahattab, Mohammed A. & Jaeckel, Bengt & Hagendorf, Christian & Ebert, Matthias & Gottschalg, Ralph & S, 2020. "Loss analysis and optimization of PV module components and design to achieve higher energy yield and longer service life in desert regions," Applied Energy, Elsevier, vol. 280(C).
    6. Al-Amri, Fahad & Saeed, Farooq & Mujeebu, Muhammad Abdul, 2022. "Novel dual-function racking structure for passive cooling of solar PV panels –thermal performance analysis," Renewable Energy, Elsevier, vol. 198(C), pages 100-113.
    7. Thopil, George Alex & Sachse, Christiaan Eddie & Lalk, Jörg & Thopil, Miriam Sara, 2020. "Techno-economic performance comparison of crystalline and thin film PV panels under varying meteorological conditions: A high solar resource southern hemisphere case," Applied Energy, Elsevier, vol. 275(C).
    8. Micheli, Leonardo & Fernandez, Eduardo F. & Aguilera, Jorge T. & Almonacid, Florencia, 2020. "Economics of seasonal photovoltaic soiling and cleaning optimization scenarios," MPRA Paper 104104, University Library of Munich, Germany.
    9. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    10. Asah, Stanley T. & Baral, Nabin, 2018. "Technicalizing non-technical participatory social impact assessment of prospective cellulosic biorefineries: Psychometric quantification and implications," Applied Energy, Elsevier, vol. 232(C), pages 462-472.
    11. Rodrigo, Pedro M. & Gutiérrez, Sebastián & Micheli, Leonardo & Fernández, Eduardo F. & Almonacid, Florencia, 2020. "Optimum cleaning schedule of photovoltaic systems based on levelised cost of energy and case study in central Mexico," MPRA Paper 104173, University Library of Munich, Germany.
    12. Abdulla, Hind & Sleptchenko, Andrei & Nayfeh, Ammar, 2024. "Photovoltaic systems operation and maintenance: A review and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    13. Mithhu, Md. Mahamudul Hasan & Rima, Tahmina Ahmed & Khan, M. Ryyan, 2021. "Global analysis of optimal cleaning cycle and profit of soiling affected solar panels," Applied Energy, Elsevier, vol. 285(C).
    14. Simone Pedrazzi & Giulio Allesina & Alberto Muscio, 2018. "Are Nano-Composite Coatings the Key for Photovoltaic Panel Self-Maintenance: An Experimental Evaluation," Energies, MDPI, vol. 11(12), pages 1-13, December.
    15. Micheli, Leonardo & Fernández, Eduardo F. & Aguilera, Jorge T. & Almonacid, Florencia, 2021. "Economics of seasonal photovoltaic soiling and cleaning optimization scenarios," Energy, Elsevier, vol. 215(PA).
    16. Ashwini Pavgi & Jaewon Oh & GovindaSamy TamizhMani, 2021. "Thermally Conductive Backsheets (TCB) of PV Modules: Positive Impacts on Performance, Lifetime and LCOE," Energies, MDPI, vol. 14(5), pages 1-14, February.
    17. Marta Redondo & Carlos A. Platero & Antonio Moset & Fernando Rodríguez & Vicente Donate, 2023. "Soiling Modelling in Large Grid-Connected PV Plants for Cleaning Optimization," Energies, MDPI, vol. 16(2), pages 1-13, January.
    18. Ibrahim, Nur Atirah & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Mustaffa, Azizul Azri & Kidam, Kamarizan, 2022. "Risk matrix approach of extreme temperature and precipitation for renewable energy systems in Malaysia," Energy, Elsevier, vol. 254(PC).
    19. Huang, Wenfeng & Zhou, Kun & Sun, Ke & He, Zhu, 2019. "Effects of wind flow structure, particle flow and deposition pattern on photovoltaic energy harvest around a block," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Ballestrín, Jesús & Polo, Jesús & Martín-Chivelet, Nuria & Barbero, Javier & Carra, Elena & Alonso-Montesinos, Joaquín & Marzo, Aitor, 2022. "Soiling forecasting of solar plants: A combined heuristic approach and autoregressive model," Energy, Elsevier, vol. 239(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4392-:d:1469725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.