IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i17p4370-d1469039.html
   My bibliography  Save this article

A Novel VSG with Adaptive Virtual Inertia and Adaptive Damping Coefficient to Improve Transient Frequency Response of Microgrids

Author

Listed:
  • Erico Gurski

    (Department of Electrical Engineering, Federal University of Parana (UFPR), Curitiba 81530-000, Brazil)

  • Roman Kuiava

    (Department of Electrical Engineering, Federal University of Parana (UFPR), Curitiba 81530-000, Brazil)

  • Filipe Perez

    (Supergrid Institute, 69100 Villeurbanne, France)

  • Raphael A. S. Benedito

    (Department of Electrical Engineering, Federal University of Technology—Parana (UTFPR), Curitiba 80230-901, Brazil)

  • Gilney Damm

    (Department of Components and Systems—Instrumentation, Modeling, Simulation and Experimentation Laboratory (COSYS-IMSE, IFSTTAR), University Gustave Eiffel, 77454 Marne-la-Vallée, France)

Abstract

This paper proposes a combined adaptive virtual Inertia and adaptive damping control of a virtual synchronous generator (AID-VSG) to improve the dynamic frequency response of microgrids. In the proposed control scheme, the VSG’s virtual inertia and damping coefficients adapt themselves during the transients to, respectively, reduce frequency deviations and increase the oscillations’ damping. In addition, as an important feature, the proposed AID-VSG is suitable for distributed control scheme applications and is designed to not rely on phase-locked loop (PLL) measurements, which avoids PLL stability issues on weak grids. The control parameters of the proposed AID-VSG are tuned by the particle swarm optimization (PSO) algorithm to minimize the overshoot and settling time of the microgrid’s frequency during an islanding event. The AID-VSG is validated by a comparative analysis with three existing VSG control schemes, also tuned by the stated optimization algorithm. The performance of each compared VSG strategy is evaluated through the simulation of a set of 10,000 initial conditions, using the islanded microgrid’s nonlinear model. The best response among the VSG strategies was achieved by the proposed AID-VSG control for both the optimization problem and the set of initial conditions’ simulations.

Suggested Citation

  • Erico Gurski & Roman Kuiava & Filipe Perez & Raphael A. S. Benedito & Gilney Damm, 2024. "A Novel VSG with Adaptive Virtual Inertia and Adaptive Damping Coefficient to Improve Transient Frequency Response of Microgrids," Energies, MDPI, vol. 17(17), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4370-:d:1469039
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/17/4370/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/17/4370/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sue Wang & Yuxin Xie, 2023. "Virtual Synchronous Generator (VSG) Control Strategy Based on Improved Damping and Angular Frequency Deviation Feedforward," Energies, MDPI, vol. 16(15), pages 1-14, July.
    2. Alghamdi, Baheej & Cañizares, Claudio, 2022. "Frequency and voltage coordinated control of a grid of AC/DC microgrids," Applied Energy, Elsevier, vol. 310(C).
    3. Hao Liu & Bo Yang & Song Xu & Mingjian Du & Shuai Lu, 2023. "Universal Virtual Synchronous Generator Based on Extended Virtual Inertia to Enhance Power and Frequency Response," Energies, MDPI, vol. 16(7), pages 1-20, March.
    4. Rongliang Shi & Caihua Lan & Ji Huang & Chengwei Ju, 2023. "Analysis and Optimization Strategy of Active Power Dynamic Response for VSG under a Weak Grid," Energies, MDPI, vol. 16(12), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenwen He & Jun Yao & Hao Xu & Qinmin Zhong & Ruilin Xu & Yuming Liu & Xiaoju Li, 2024. "Transient Synchronous Stability Analysis of Grid-Forming Photovoltaic Grid-Connected Inverters during Asymmetrical Grid Faults," Energies, MDPI, vol. 17(6), pages 1-19, March.
    2. Ahmed M. Hussien & Jonghoon Kim & Abdulaziz Alkuhayli & Mohammed Alharbi & Hany M. Hasanien & Marcos Tostado-Véliz & Rania A. Turky & Francisco Jurado, 2022. "Adaptive PI Control Strategy for Optimal Microgrid Autonomous Operation," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    3. Yin, Linfei & He, Xiaoyu, 2023. "Artificial emotional deep Q learning for real-time smart voltage control of cyber-physical social power systems," Energy, Elsevier, vol. 273(C).
    4. Zhang, Bin & Hu, Weihao & Ghias, Amer M.Y.M. & Xu, Xiao & Chen, Zhe, 2022. "Multi-agent deep reinforcement learning-based coordination control for grid-aware multi-buildings," Applied Energy, Elsevier, vol. 328(C).
    5. Zejun Tong & Chun Zhang & Xiaotai Wu & Pengcheng Gao & Shuang Wu & Haoyu Li, 2023. "Economic Optimization Control Method of Grid-Connected Microgrid Based on Improved Pinning Consensus," Energies, MDPI, vol. 16(3), pages 1-31, January.
    6. Mousavizade, Mirsaeed & Bai, Feifei & Garmabdari, Rasoul & Sanjari, Mohammad & Taghizadeh, Foad & Mahmoudian, Ali & Lu, Junwei, 2023. "Adaptive control of V2Gs in islanded microgrids incorporating EV owner expectations," Applied Energy, Elsevier, vol. 341(C).
    7. Rongliang Shi & Caihua Lan & Ji Huang & Chengwei Ju, 2023. "Analysis and Optimization Strategy of Active Power Dynamic Response for VSG under a Weak Grid," Energies, MDPI, vol. 16(12), pages 1-18, June.
    8. Md Asaduzzaman Shobug & Nafis Ahmed Chowdhury & Md Alamgir Hossain & Mohammad J. Sanjari & Junwei Lu & Fuwen Yang, 2024. "Virtual Inertia Control for Power Electronics-Integrated Power Systems: Challenges and Prospects," Energies, MDPI, vol. 17(11), pages 1-33, June.
    9. Baheej Alghamdi, 2022. "Fuzzy Logic–Based Decentralized Voltage–Frequency Control and Inertia Control of a VSG-Based Isolated Microgrid System," Energies, MDPI, vol. 15(22), pages 1-29, November.
    10. Mohammed M. Alhaider & Ziad M. Ali & Mostafa H. Mostafa & Shady H. E. Abdel Aleem, 2023. "Economic Viability of NaS Batteries for Optimal Microgrid Operation and Hosting Capacity Enhancement under Uncertain Conditions," Sustainability, MDPI, vol. 15(20), pages 1-24, October.
    11. Mu Yang & Xiaojie Wu & Dongsheng Yu & Maxwell Chiemeka Loveth & Samson S. Yu, 2024. "An Optimized Power-Angle and Excitation Dual Loop Virtual Power System Stabilizer for Enhanced MMC-VSG Control and Low-Frequency Oscillation Suppression," Energies, MDPI, vol. 17(18), pages 1-27, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4370-:d:1469039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.