IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i17p4207-d1462311.html
   My bibliography  Save this article

Influence of Microwave-Assisted Chemical Thermohydrolysis of Lignocellulosic Waste Biomass on Anaerobic Digestion Efficiency

Author

Listed:
  • Marcin Dębowski

    (Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland)

  • Marcin Zieliński

    (Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland)

  • Anna Nowicka

    (Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland)

  • Joanna Kazimierowicz

    (Department of Water Supply and Sewage Systems, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland)

Abstract

To date, microwave radiation has been successfully used to support the chemical hydrolysis of organic substrates in the laboratory. There is a lack of studies on large-scale plants that would provide the basis for a reliable evaluation of this technology. The aim of the research was to determine the effectiveness of using microwave radiation to support the acidic and alkaline thermohydrolysis of lignocellulosic biomass prior to anaerobic digestion on a semi-industrial scale. Regardless of the pretreatment options, similar concentrations of dissolved organic compounds were observed, ranging from 99.0 ± 2.5 g/L to 115.0 ± 3.0 in the case of COD and from 33.9 ± 0.92 g/L to 38.2 ± 1.41 g/L for TOC. However, these values were more than twice as high as the values for the substrate without pretreatment. The degree of solubilisation was similar and ranged between 20 and 28% for both monitored indicators. The highest anaerobic digestion effects, ranging from 99 to 102 LCH4/kgFM, were achieved using a combined process consisting of 20 min of microwave heating, 0.10–0.20 g HCl/gTS dose, and alkaline thermohydrolysis. For the control sample, the value was only 78 LCH 4 /kgFM; for the other variants, it was between 79 and 94 LCH 4 /kgFM. The highest net energy gain of 3.51 kWh was achieved in the combined alkaline thermohydrolysis with NaOH doses between 0.10 and 0.20 g/gTS. The use of a prototype at the 5th technology readiness level made it possible to demonstrate that the strong technological effects of the thermohydrolysis process, as demonstrated in laboratory tests to date, do not allow for positive energy balance in most cases. This fact considerably limits the practical application of this type of solution.

Suggested Citation

  • Marcin Dębowski & Marcin Zieliński & Anna Nowicka & Joanna Kazimierowicz, 2024. "Influence of Microwave-Assisted Chemical Thermohydrolysis of Lignocellulosic Waste Biomass on Anaerobic Digestion Efficiency," Energies, MDPI, vol. 17(17), pages 1-22, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4207-:d:1462311
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/17/4207/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/17/4207/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yue, Liangchen & Cheng, Jun & Tang, Suqin & An, Xiaoxia & Hua, Junjie & Dong, Haiquan & Zhou, Junhu, 2021. "Ultrasound and microwave pretreatments promote methane production potential and energy conversion during anaerobic digestion of lipid and food wastes," Energy, Elsevier, vol. 228(C).
    2. Hu, Zhen-Hu & Yue, Zhen-Bo & Yu, Han-Qing & Liu, Shao-Yang & Harada, Hideki & Li, Yu-You, 2012. "Mechanisms of microwave irradiation pretreatment for enhancing anaerobic digestion of cattail by rumen microorganisms," Applied Energy, Elsevier, vol. 93(C), pages 229-236.
    3. Spyridon Achinas & Yu Li & Vasileios Achinas & Gerrit Jan Willem Euverink, 2019. "Biogas Potential from the Anaerobic Digestion of Potato Peels: Process Performance and Kinetics Evaluation," Energies, MDPI, vol. 12(12), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Sheng & Lin, Zhang & Ai, Zhengtao & Huan, Chao & Cheng, Yong & Wang, Fenghao, 2019. "Multi-criteria performance optimization for operation of stratum ventilation under heating mode," Applied Energy, Elsevier, vol. 239(C), pages 969-980.
    2. Amal Babu Puthumana & Prasad Kaparaju, 2024. "Impact of Organic Load on Methane Yields and Kinetics during Anaerobic Digestion of Sugarcane Bagasse: Optimal Feed-to-Inoculum Ratio and Total Solids of Reactor Working Volume," Energies, MDPI, vol. 17(20), pages 1-18, October.
    3. Walczak, Justyna & Karolinczak, Beata & Zubrowska-Sudol, Monika, 2023. "Effect of co-digestion and hydrodynamic disintegration on the methane potential of sewage sludge and organic fraction of municipal solid waste with consideration of the carbon footprint," Energy, Elsevier, vol. 282(C).
    4. Gabriel S. Aruwajoye & Alaika Kassim & Akshay K. Saha & Evariste B. Gueguim Kana, 2020. "Prospects for the Improvement of Bioethanol and Biohydrogen Production from Mixed Starch-Based Agricultural Wastes," Energies, MDPI, vol. 13(24), pages 1-22, December.
    5. Jurado, Esperanza & Skiadas, Ioannis V. & Gavala, Hariklia N., 2013. "Enhanced methane productivity from manure fibers by aqueous ammonia soaking pretreatment," Applied Energy, Elsevier, vol. 109(C), pages 104-111.
    6. Peng, Huadong & Chen, Hongzhang & Qu, Yongshui & Li, Hongqiang & Xu, Jian, 2014. "Bioconversion of different sizes of microcrystalline cellulose pretreated by microwave irradiation with/without NaOH," Applied Energy, Elsevier, vol. 117(C), pages 142-148.
    7. Sanjeev Kumar Soni & Binny Sharma & Apurav Sharma & Bishakha Thakur & Raman Soni, 2023. "Exploring the Potential of Potato Peels for Bioethanol Production through Various Pretreatment Strategies and an In-House-Produced Multi-Enzyme System," Sustainability, MDPI, vol. 15(11), pages 1-19, June.
    8. Varbanov, Petar Sabev & Wang, Bohong & Ocłoń, Paweł & Radziszewska-Zielina, Elżbieta & Ma, Ting & Klemeš, Jiří Jaromír & Jia, Xuexiu, 2023. "Efficiency measures for energy supply and use aiming for a clean circular economy," Energy, Elsevier, vol. 283(C).
    9. Bohutskyi, Pavlo & Chow, Steven & Ketter, Ben & Betenbaugh, Michael J. & Bouwer, Edward J., 2015. "Prospects for methane production and nutrient recycling from lipid extracted residues and whole Nannochloropsis salina using anaerobic digestion," Applied Energy, Elsevier, vol. 154(C), pages 718-731.
    10. Jiří Souček & Algirdas Jasinskas, 2020. "Assessment of the Use of Potatoes as a Binder in Flax Heating Pellets," Sustainability, MDPI, vol. 12(24), pages 1-14, December.
    11. Chen, Xiaohua & Zhang, YaLei & Gu, Yu & Liu, Zhanguang & Shen, Zheng & Chu, Huaqiang & Zhou, Xuefei, 2014. "Enhancing methane production from rice straw by extrusion pretreatment," Applied Energy, Elsevier, vol. 122(C), pages 34-41.
    12. Passos, Fabiana & Solé, Maria & García, Joan & Ferrer, Ivet, 2013. "Biogas production from microalgae grown in wastewater: Effect of microwave pretreatment," Applied Energy, Elsevier, vol. 108(C), pages 168-175.
    13. Marcin Zieliński & Joanna Kazimierowicz & Marcin Dębowski, 2022. "Advantages and Limitations of Anaerobic Wastewater Treatment—Technological Basics, Development Directions, and Technological Innovations," Energies, MDPI, vol. 16(1), pages 1-39, December.
    14. Mariana Ferdeș & Bianca Ștefania Zăbavă & Gigel Paraschiv & Mariana Ionescu & Mirela Nicoleta Dincă & Georgiana Moiceanu, 2022. "Food Waste Management for Biogas Production in the Context of Sustainable Development," Energies, MDPI, vol. 15(17), pages 1-27, August.
    15. Sha, Hao & Zhao, Bo & Yang, Yuyi & Zhang, Yanhui & Zheng, Pengfei & Cao, Shengxian & Wang, Qing & Wang, Gong, 2023. "Enhanced anaerobic digestion of corn stover using magnetized cellulase combined with Ni-graphite coating," Energy, Elsevier, vol. 262(PB).
    16. Spyridon Achinas & Johan Horjus & Vasileios Achinas & Gerrit Jan Willem Euverink, 2019. "A PESTLE Analysis of Biofuels Energy Industry in Europe," Sustainability, MDPI, vol. 11(21), pages 1-24, October.
    17. Kavitha, S. & Banu, J. Rajesh & Priya, A. Arul & Uan, Do Khac & Yeom, Ick Tae, 2017. "Liquefaction of food waste and its impacts on anaerobic biodegradability, energy ratio and economic feasibility," Applied Energy, Elsevier, vol. 208(C), pages 228-238.
    18. Soltan, Mohamed & Elsamadony, Mohamed & Tawfik, Ahmed, 2017. "Biological hydrogen promotion via integrated fermentation of complex agro-industrial wastes," Applied Energy, Elsevier, vol. 185(P1), pages 929-938.
    19. Ebenezer, A. Vimala & Arulazhagan, P. & Adish Kumar, S. & Yeom, Ick-Tae & Rajesh Banu, J., 2015. "Effect of deflocculation on the efficiency of low-energy microwave pretreatment and anaerobic biodegradation of waste activated sludge," Applied Energy, Elsevier, vol. 145(C), pages 104-110.
    20. Santo Fabio Corsino & Michele Torregrossa & Gaspare Viviani, 2021. "Biomethane Production from Anaerobic Co-Digestion of Selected Organic Fraction of Municipal Solid Waste (OFMSW) with Sewage Sludge: Effect of the Inoculum to Substrate Ratio (ISR) and Mixture Composit," IJERPH, MDPI, vol. 18(24), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4207-:d:1462311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.