IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i16p4182-d1461450.html
   My bibliography  Save this article

Optimal Vehicle-to-Grid Strategies for Energy Sharing Management Using Electric School Buses

Author

Listed:
  • Ruengwit Khwanrit

    (School of Information Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan
    School of Information, Computer, and Communication Technology (ICT), Sirindhorn International Institute of Technology, Thammasat University, Khlong Luang 12120, Pathum Thani, Thailand)

  • Saher Javaid

    (School of Information Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan)

  • Yuto Lim

    (School of Information Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan)

  • Chalie Charoenlarpnopparut

    (School of Information, Computer, and Communication Technology (ICT), Sirindhorn International Institute of Technology, Thammasat University, Khlong Luang 12120, Pathum Thani, Thailand)

  • Yasuo Tan

    (School of Information Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan)

Abstract

In today’s power systems, electric vehicles (EVs) constitute a significant factor influencing electricity dynamics, with their important role anticipated in future smart grid systems. An important feature of electric vehicles is their dual capability to both charge and discharge energy to/from their battery storage. Notably, the discharge capability enables them to offer vehicle-to-grid (V2G) services. However, most V2G research focuses on passenger cars, which typically already have their own specific usage purposes and various traveling schedules. This situation may pose practical challenges in providing ancillary services to the grid. Conversely, electric school buses (ESBs) exhibit a more predictable usage pattern, often deployed at specific times and remaining idle for extended periods. This makes ESBs more practical for delivering V2G services, especially when prompted by incentive price signals from grid or utility companies (UC) requesting peak shaving services. In this paper, we introduce a V2G energy sharing model focusing on ESBs in various schools in a single community by formulating the problem as a leader–follower game. In this model, the UC assumes the role of the leader, determining the optimal incentive price to offer followers for discharging energy from their battery storage. The UC aims to minimize additional costs from generating energy during peak demand. On the other hand, schools in a community possessing multiple ESBs act as followers, seeking the optimal quantity of discharged energy from their battery storage. They aim to maximize utility by responding to the UC’s incentive price. The results demonstrate that the proposed model and algorithm significantly aid the UC in reducing the additional cost of energy generation during peak periods by 36% compared to solely generating all electricity independently. Furthermore, they substantially reduce the utility bills for schools by up to 22.6% and lower the peak-to-average ratio of the system by up to 9.5%.

Suggested Citation

  • Ruengwit Khwanrit & Saher Javaid & Yuto Lim & Chalie Charoenlarpnopparut & Yasuo Tan, 2024. "Optimal Vehicle-to-Grid Strategies for Energy Sharing Management Using Electric School Buses," Energies, MDPI, vol. 17(16), pages 1-25, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4182-:d:1461450
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/16/4182/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/16/4182/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Noel, Lance & McCormack, Regina, 2014. "A cost benefit analysis of a V2G-capable electric school bus compared to a traditional diesel school bus," Applied Energy, Elsevier, vol. 126(C), pages 246-255.
    2. Wu, Z. & Guo, F. & Polak, J. & Strbac, G., 2019. "Evaluating grid-interactive electric bus operation and demand response with load management tariff," Applied Energy, Elsevier, vol. 255(C).
    3. Dong Sik Kim & Young Mo Chung & Beom Jin Chung, 2023. "Statistical Analysis of Electric Vehicle Charging Based on AC Slow Chargers," Energies, MDPI, vol. 16(6), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    2. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    3. Ellegood, William A. & Riley, Jason M. & Berg, M. Douglas, 2024. "The many costs of operating school buses in America," Research in Transportation Economics, Elsevier, vol. 103(C).
    4. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    5. Alabi, Oluwafisayo & Turner, Karen & Figus, Gioele & Katris, Antonios & Calvillo, Christian, 2020. "Can spending to upgrade electricity networks to support electric vehicles (EVs) roll-outs unlock value in the wider economy?," Energy Policy, Elsevier, vol. 138(C).
    6. Wenz, Klaus-Peter & Serrano-Guerrero, Xavier & Barragán-Escandón, Antonio & González, L.G. & Clairand, Jean-Michel, 2021. "Route prioritization of urban public transportation from conventional to electric buses: A new methodology and a study of case in an intermediate city of Ecuador," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    7. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    8. Ramona Rieckhof & Nadine May & Christoph Scope & Edeltraud Günther, 2016. "Ökonomisch-ökologischer Nettoeffekt der Elektromobilität im öffentlichen Personennahverkehr," Sustainability Nexus Forum, Springer, vol. 24(1), pages 107-119, June.
    9. Kayhan Alamatsaz & Sadam Hussain & Chunyan Lai & Ursula Eicker, 2022. "Electric Bus Scheduling and Timetabling, Fast Charging Infrastructure Planning, and Their Impact on the Grid: A Review," Energies, MDPI, vol. 15(21), pages 1-39, October.
    10. Purnell, K. & Bruce, A.G. & MacGill, I., 2022. "Impacts of electrifying public transit on the electricity grid, from regional to state level analysis," Applied Energy, Elsevier, vol. 307(C).
    11. Kristián Čulík & Vladimíra Štefancová & Karol Hrudkay & Ján Morgoš, 2021. "Interior Heating and Its Influence on Electric Bus Consumption," Energies, MDPI, vol. 14(24), pages 1-19, December.
    12. Noori, Mehdi & Zhao, Yang & Onat, Nuri C. & Gardner, Stephanie & Tatari, Omer, 2016. "Light-duty electric vehicles to improve the integrity of the electricity grid through Vehicle-to-Grid technology: Analysis of regional net revenue and emissions savings," Applied Energy, Elsevier, vol. 168(C), pages 146-158.
    13. Jian, Linni & Zheng, Yanchong & Xiao, Xinping & Chan, C.C., 2015. "Optimal scheduling for vehicle-to-grid operation with stochastic connection of plug-in electric vehicles to smart grid," Applied Energy, Elsevier, vol. 146(C), pages 150-161.
    14. Mehrnaz Farzam Far & Mikko Pihlatie & Marko Paakkinen & Marko Antila & Aida Abdulah, 2022. "Pre-Normative Charging Technology Roadmap for Heavy-Duty Electric Vehicles in Europe," Energies, MDPI, vol. 15(7), pages 1-24, March.
    15. Bitencourt, Leonardo & Dias, Bruno & Soares, Tiago & Borba, Bruno & Quirós-Tortós, Jairo, 2023. "e-Carsharing siting and sizing DLMP-based under demand uncertainty," Applied Energy, Elsevier, vol. 330(PB).
    16. Dwi Novirani & Hari Adianto, 2020. "Relation of Service Quality, Load Factors and Tariff on Bus City of Bandung," International Review of Management and Marketing, Econjournals, vol. 10(4), pages 152-160.
    17. Dhirendra Kumar Tiwari & Urvashi Tandon & Amit Mittal, 2024. "Analysing adoption of eVehicles among Indian consumers: a novel approach towards sustainable transport," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 22997-23023, September.
    18. Tang, Chong & Liu, Mingbo & Xie, Min & Dong, Ping & Zhu, Jianquan & Lin, Shunjiang, 2021. "A single-leader and multiple-follower stackelberg model for the look-ahead dispatch of plug-in electric buses in multiple microgrids," Energy, Elsevier, vol. 214(C).
    19. Zeng, Bo & Luo, Yangfan, 2022. "Potential of harnessing operational flexibility from public transport hubs to improve reliability and economic performance of urban multi-energy systems: A holistic assessment framework," Applied Energy, Elsevier, vol. 322(C).
    20. Bálint Csonka, 2021. "Optimization of Static and Dynamic Charging Infrastructure for Electric Buses," Energies, MDPI, vol. 14(12), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4182-:d:1461450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.