IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i16p4047-d1456701.html
   My bibliography  Save this article

Modeling the Optimal Transition of an Urban Neighborhood towards an Energy Community and a Positive Energy District

Author

Listed:
  • Diego Viesi

    (Center for Sustainable Energy, Fondazione Bruno Kessler (FBK), Via Sommarive 18, 38123 Trento, Italy)

  • Gregorio Borelli

    (Center for Sustainable Energy, Fondazione Bruno Kessler (FBK), Via Sommarive 18, 38123 Trento, Italy
    Faculty of Engineering, Free University of Bozen-Bolzano (UNIBZ), Piazza Università 5, 39100 Bolzano, Italy)

  • Silvia Ricciuti

    (Center for Sustainable Energy, Fondazione Bruno Kessler (FBK), Via Sommarive 18, 38123 Trento, Italy)

  • Giovanni Pernigotto

    (Faculty of Engineering, Free University of Bozen-Bolzano (UNIBZ), Piazza Università 5, 39100 Bolzano, Italy)

  • Md Shahriar Mahbub

    (Center for Sustainable Energy, Fondazione Bruno Kessler (FBK), Via Sommarive 18, 38123 Trento, Italy
    Department of Computer Science and Engineering, Ahsanullah Univeristy of Science & Technology (AUST), Love Road 141&142, Tejgaon Industrial Area, Dhaka 1208, Bangladesh)

Abstract

Building renovation is a key initiative to promote energy efficiency, the integration of renewable energy sources (RESs), and a reduction in CO 2 emissions. Supporting these goals, emerging research is dedicated to energy communities and positive energy districts. In this work, an urban neighborhood of six buildings in Trento (Italy) is considered. Firstly, the six buildings are modeled with the Urban Modeling Interface tool to evaluate the energy performances in 2024 and 2050, also accounting for the different climatic conditions for these two time periods. Energy demands for space heating, domestic hot water, space cooling, electricity, and transport are computed. Then, EnergyPLAN coupled with a multi-objective evolutionary algorithm is used to investigate 12 different energy decarbonization scenarios in 2024 and 2050 based on different boundaries for RESs, energy storage, hydrogen, energy system integration, and energy community incentives. Two conflicting objectives are considered: cost and CO 2 emission reductions. The results show, on the one hand, the key role of sector coupling technologies such as heat pumps and electric vehicles in exploiting local renewables and, on the other hand, the higher costs in introducing both electricity storage to approach complete decarbonization and hydrogen as an alternative strategy in the electricity, thermal, and transport sectors. As an example of the quantitative valuable finding of this work, in scenario S1 “all sectors and EC incentive” for the year 2024, a large reduction of 55% of CO 2 emissions with a modest increase of 11% of the total annual cost is identified along the Pareto front.

Suggested Citation

  • Diego Viesi & Gregorio Borelli & Silvia Ricciuti & Giovanni Pernigotto & Md Shahriar Mahbub, 2024. "Modeling the Optimal Transition of an Urban Neighborhood towards an Energy Community and a Positive Energy District," Energies, MDPI, vol. 17(16), pages 1-30, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4047-:d:1456701
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/16/4047/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/16/4047/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kiwan, Suhil & Al-Gharibeh, Elyasa, 2020. "Jordan toward a 100% renewable electricity system," Renewable Energy, Elsevier, vol. 147(P1), pages 423-436.
    2. Bellocchi, Sara & Manno, Michele & Noussan, Michel & Prina, Matteo Giacomo & Vellini, Michela, 2020. "Electrification of transport and residential heating sectors in support of renewable penetration: Scenarios for the Italian energy system," Energy, Elsevier, vol. 196(C).
    3. Mahbub, Md Shahriar & Cozzini, Marco & Østergaard, Poul Alberg & Alberti, Fabrizio, 2016. "Combining multi-objective evolutionary algorithms and descriptive analytical modelling in energy scenario design," Applied Energy, Elsevier, vol. 164(C), pages 140-151.
    4. Herc, Luka & Pfeifer, Antun & Duić, Neven, 2022. "Optimization of the possible pathways for gradual energy system decarbonization," Renewable Energy, Elsevier, vol. 193(C), pages 617-633.
    5. Mahbub, Md Shahriar & Viesi, Diego & Cattani, Sara & Crema, Luigi, 2017. "An innovative multi-objective optimization approach for long-term energy planning," Applied Energy, Elsevier, vol. 208(C), pages 1487-1504.
    6. Novosel, T. & Perković, L. & Ban, M. & Keko, H. & Pukšec, T. & Krajačić, G. & Duić, N., 2015. "Agent based modelling and energy planning – Utilization of MATSim for transport energy demand modelling," Energy, Elsevier, vol. 92(P3), pages 466-475.
    7. Battini, Federico & Pernigotto, Giovanni & Gasparella, Andrea, 2023. "District-level validation of a shoeboxing simplification algorithm to speed-up Urban Building Energy Modeling simulations," Applied Energy, Elsevier, vol. 349(C).
    8. Viesi, Diego & Crema, Luigi & Mahbub, Md Shahriar & Verones, Sara & Brunelli, Roberto & Baggio, Paolo & Fauri, Maurizio & Prada, Alessandro & Bello, Andrea & Nodari, Benedetta & Silvestri, Silvia & To, 2020. "Integrated and dynamic energy modelling of a regional system: A cost-optimized approach in the deep decarbonisation of the Province of Trento (Italy)," Energy, Elsevier, vol. 209(C).
    9. Vaccaro, Roberto & Rocco, Matteo V., 2021. "Quantifying the impact of low carbon transition scenarios at regional level through soft-linked energy and economy models: The case of South-Tyrol Province in Italy," Energy, Elsevier, vol. 220(C).
    10. Dominković, D.F. & Bin Abdul Rashid, K.A. & Romagnoli, A. & Pedersen, A.S. & Leong, K.C. & Krajačić, G. & Duić, N., 2017. "Potential of district cooling in hot and humid climates," Applied Energy, Elsevier, vol. 208(C), pages 49-61.
    11. Østergaard, Poul Alberg & Jantzen, Jan & Marczinkowski, Hannah Mareike & Kristensen, Michael, 2019. "Business and socioeconomic assessment of introducing heat pumps with heat storage in small-scale district heating systems," Renewable Energy, Elsevier, vol. 139(C), pages 904-914.
    12. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Chang, Miguel & Lund, Henrik & Thellufsen, Jakob Zinck & Østergaard, Poul Alberg, 2023. "Perspectives on purpose-driven coupling of energy system models," Energy, Elsevier, vol. 265(C).
    3. Bellocchi, Sara & Manno, Michele & Noussan, Michel & Prina, Matteo Giacomo & Vellini, Michela, 2020. "Electrification of transport and residential heating sectors in support of renewable penetration: Scenarios for the Italian energy system," Energy, Elsevier, vol. 196(C).
    4. Besagni, Giorgio & Premoli Vilà, Lidia & Borgarello, Marco & Trabucchi, Andrea & Merlo, Marco & Rodeschini, Jacopo & Finazzi, Francesco, 2021. "Electrification pathways of the Italian residential sector under socio-demographic constrains: Looking towards 2040," Energy, Elsevier, vol. 217(C).
    5. Laha, Priyanka & Chakraborty, Basab, 2021. "Low carbon electricity system for India in 2030 based on multi-objective multi-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    7. Østergaard, Poul Alberg & Andersen, Anders N. & Sorknæs, Peter, 2022. "The business-economic energy system modelling tool energyPRO," Energy, Elsevier, vol. 257(C).
    8. Nielsen, Tore Bach & Lund, Henrik & Østergaard, Poul Alberg & Duic, Neven & Mathiesen, Brian Vad, 2021. "Perspectives on energy efficiency and smart energy systems from the 5th SESAAU2019 conference," Energy, Elsevier, vol. 216(C).
    9. Groppi, Daniele & Nastasi, Benedetto & Prina, Matteo Giacomo, 2022. "The EPLANoptMAC model to plan the decarbonisation of the maritime transport sector of a small island," Energy, Elsevier, vol. 254(PA).
    10. Viesi, Diego & Crema, Luigi & Mahbub, Md Shahriar & Verones, Sara & Brunelli, Roberto & Baggio, Paolo & Fauri, Maurizio & Prada, Alessandro & Bello, Andrea & Nodari, Benedetta & Silvestri, Silvia & To, 2020. "Integrated and dynamic energy modelling of a regional system: A cost-optimized approach in the deep decarbonisation of the Province of Trento (Italy)," Energy, Elsevier, vol. 209(C).
    11. Østergaard, Poul Alberg & Andersen, Anders N., 2021. "Variable taxes promoting district heating heat pump flexibility," Energy, Elsevier, vol. 221(C).
    12. Carli, Raffaele & Dotoli, Mariagrazia & Jantzen, Jan & Kristensen, Michael & Ben Othman, Sarah, 2020. "Energy scheduling of a smart microgrid with shared photovoltaic panels and storage: The case of the Ballen marina in Samsø," Energy, Elsevier, vol. 198(C).
    13. Jasmine Ramsebner & Reinhard Haas & Amela Ajanovic & Martin Wietschel, 2021. "The sector coupling concept: A critical review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(4), July.
    14. Mimica, Marko & Krajačić, Goran, 2021. "The Smart Islands method for defining energy planning scenarios on islands," Energy, Elsevier, vol. 237(C).
    15. Matteo Giacomo Prina & Giampaolo Manzolini & David Moser & Roberto Vaccaro & Wolfram Sparber, 2020. "Multi-Objective Optimization Model EPLANopt for Energy Transition Analysis and Comparison with Climate-Change Scenarios," Energies, MDPI, vol. 13(12), pages 1-22, June.
    16. Herc, Luka & Pfeifer, Antun & Duić, Neven, 2022. "Optimization of the possible pathways for gradual energy system decarbonization," Renewable Energy, Elsevier, vol. 193(C), pages 617-633.
    17. Møller Sneum, Daniel, 2021. "Barriers to flexibility in the district energy-electricity system interface – A taxonomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    18. Bačeković, Ivan & Østergaard, Poul Alberg, 2018. "Local smart energy systems and cross-system integration," Energy, Elsevier, vol. 151(C), pages 812-825.
    19. Marczinkowski, Hannah Mareike & Østergaard, Poul Alberg, 2019. "Evaluation of electricity storage versus thermal storage as part of two different energy planning approaches for the islands Samsø and Orkney," Energy, Elsevier, vol. 175(C), pages 505-514.
    20. Moser, Simon & Puschnigg, Stefan & Rodin, Valerie, 2020. "Designing the Heat Merit Order to determine the value of industrial waste heat for district heating systems," Energy, Elsevier, vol. 200(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4047-:d:1456701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.