IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i15p3685-d1443485.html
   My bibliography  Save this article

Multi-Utility Solar Thermal Systems: Harnessing Parabolic Trough Concentrator Using SAM Software for Diverse Industrial and Residential Applications

Author

Listed:
  • Soufyane Naaim

    (Laboratory of Electronic Systems, Information Processing, Mechanics and Energetics, Faculty of Sciences, Ibn Tofail University, Kenitra P.C 133-14000, Morocco)

  • Badr Ouhammou

    (National School of Applied Sciences, Chouaib Doukkali University, Eljadida P.C 5096-24002, Morocco)

  • Mohammed Aggour

    (Laboratory of Electronic Systems, Information Processing, Mechanics and Energetics, Faculty of Sciences, Ibn Tofail University, Kenitra P.C 133-14000, Morocco)

  • Brahim Daouchi

    (Laboratory of Electronic Systems, Information Processing, Mechanics and Energetics, Faculty of Sciences, Ibn Tofail University, Kenitra P.C 133-14000, Morocco)

  • El Mahdi El Mers

    (Laboratory of Electronic Systems, Information Processing, Mechanics and Energetics, Faculty of Sciences, Ibn Tofail University, Kenitra P.C 133-14000, Morocco)

  • Miriam Mihi

    (Laboratory of Electronic Systems, Information Processing, Mechanics and Energetics, Faculty of Sciences, Ibn Tofail University, Kenitra P.C 133-14000, Morocco)

Abstract

This study investigates the technical and economic feasibility of a 20 M W parabolic trough solar thermal power plant (PTSTPP) located in Kenitra, Morocco, characterized by an annual average direct normal irradiance (DNI) exceeding 5.3 k W h / m 2 / d a y . Utilizing System Advisor Model (SAM) 2012.12.02 software, the plant is designed with Therminol VP-1 as the heat transfer fluid (HTF) throughout the solar field, coupled with a dry cooling system to reduce water consumption. The proposed thermal energy storage (TES) system employs HITEC solar salt as the storage medium, allowing for six full load hours of thermal energy storage. With a solar multiple (SM) of 2, the simulated plant demonstrates the capability to generate an annual electricity output of 50.51 G W h . The economic viability of the plant is further assessed, revealing a Levelized Cost of Electricity (LCOE) of 0.1717 $ / k W h and a capacity factor (CF) of 32%. This comprehensive analysis provides valuable insights into the performance, economic viability, and sustainability of a parabolic trough solar power plant in the specific climatic conditions of Kenitra, Morocco.

Suggested Citation

  • Soufyane Naaim & Badr Ouhammou & Mohammed Aggour & Brahim Daouchi & El Mahdi El Mers & Miriam Mihi, 2024. "Multi-Utility Solar Thermal Systems: Harnessing Parabolic Trough Concentrator Using SAM Software for Diverse Industrial and Residential Applications," Energies, MDPI, vol. 17(15), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3685-:d:1443485
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/15/3685/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/15/3685/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aly, Ahmed & Bernardos, Ana & Fernandez-Peruchena, Carlos M. & Jensen, Steen Solvang & Pedersen, Anders Branth, 2019. "Is Concentrated Solar Power (CSP) a feasible option for Sub-Saharan Africa?: Investigating the techno-economic feasibility of CSP in Tanzania," Renewable Energy, Elsevier, vol. 135(C), pages 1224-1240.
    2. Hanane Ait Lahoussine Ouali & Ahmed Alami Merrouni & Shahariar Chowdhury & Kuaanan Techato & Sittiporn Channumsin & Nasim Ullah, 2022. "Optimization and Techno-Economic Appraisal of Parabolic Trough Solar Power Plant under Different Scenarios: A Case Study of Morocco," Energies, MDPI, vol. 15(22), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nawaz Edoo & Robert T. F. Ah King, 2021. "Techno-Economic Analysis of Utility-Scale Solar Photovoltaic Plus Battery Power Plant," Energies, MDPI, vol. 14(23), pages 1-22, December.
    2. Gutiérrez-Alvarez, R. & Guerra, K. & Haro, P., 2023. "Market profitability of CSP-biomass hybrid power plants: Towards a firm supply of renewable energy," Applied Energy, Elsevier, vol. 335(C).
    3. Rediske, Graciele & Michels, Leandro & Siluk, Julio Cezar Mairesse & Rigo, Paula Donaduzzi & Rosa, Carmen Brum & Lima, Andrei Cunha, 2024. "A proposed set of indicators for evaluating the performance of the operation and maintenance of photovoltaic plants," Applied Energy, Elsevier, vol. 354(PA).
    4. Tazi, Nacef & Safaei, Fatemeh & Hnaien, Faicel, 2022. "Assessment of the levelized cost of energy using a stochastic model," Energy, Elsevier, vol. 238(PB).
    5. Ephraim Bonah Agyekum & Tomiwa Sunday Adebayo & Festus Victor Bekun & Nallapaneni Manoj Kumar & Manoj Kumar Panjwani, 2021. "Effect of Two Different Heat Transfer Fluids on the Performance of Solar Tower CSP by Comparing Recompression Supercritical CO 2 and Rankine Power Cycles, China," Energies, MDPI, vol. 14(12), pages 1-19, June.
    6. Chennaif, Mohammed & Maaouane, Mohamed & Zahboune, Hassan & Elhafyani, Mohammed & Zouggar, Smail, 2022. "Tri-objective techno-economic sizing optimization of Off-grid and On-grid renewable energy systems using Electric system Cascade Extended analysis and system Advisor Model," Applied Energy, Elsevier, vol. 305(C).
    7. Kamath, Harsh G. & Majumdar, Rudrodip & Krishnan, A.V. & Srikanth, R., 2022. "Cost and environmental benefits of coal-concentrated solar power (CSP) hybridization in India," Energy, Elsevier, vol. 240(C).
    8. Wang, Qiliang & Pei, Gang & Yang, Hongxing, 2021. "Techno-economic assessment of performance-enhanced parabolic trough receiver in concentrated solar power plants," Renewable Energy, Elsevier, vol. 167(C), pages 629-643.
    9. Almaktar, Mohamed & Shaaban, Mohamed, 2021. "Prospects of renewable energy as a non-rivalry energy alternative in Libya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    10. Emmanuel Wendsongre Ramde & Eric Tutu Tchao & Yesuenyeagbe Atsu Kwabla Fiagbe & Jerry John Kponyo & Asakipaam Simon Atuah, 2020. "Pilot Low-Cost Concentrating Solar Power Systems Deployment in Sub-Saharan Africa: A Case Study of Implementation Challenges," Sustainability, MDPI, vol. 12(15), pages 1-14, August.
    11. Sara Benyadry & Mohammed Halimi & Ahmed Khouya, 2024. "Soiling impact and cleaning techniques for optimizing photovoltaic and concentrated solar power power production: A state-of-the-art review," Energy & Environment, , vol. 35(3), pages 1637-1669, May.
    12. Ephraim Bonah Agyekum & Tahir Khan & Nimay Chandra Giri, 2023. "Evaluating the Technical, Economic, and Environmental Performance of Solar Water Heating System for Residential Applications–Comparison of Two Different Working Fluids (Water and Glycol)," Sustainability, MDPI, vol. 15(19), pages 1-24, October.
    13. Cibelle Pereira Trama & Amaro Olímpio Pereira Júnior & Ana Paula Cardoso Guimarães & André Luiz Diniz & Leonardo dos Santos Reis Vieira, 2021. "Cost–Benefit Analysis of Solar Thermal Plants with Storage in a Hydrothermal System," Energies, MDPI, vol. 14(18), pages 1-27, September.
    14. Ghaithan, Ahmed & Hadidi, Laith & Mohammed, Awsan, 2024. "Techno-economic assessment of concentrated solar power generation in Saudi Arabia," Renewable Energy, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3685-:d:1443485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.