IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i15p3669-d1442741.html
   My bibliography  Save this article

Exploring the Feasibility of Energy Extraction from the Bedretto Tunnel in Switzerland

Author

Listed:
  • Théo Halter

    (Department of Earth Sciences, ETH Zürich, 8092 Zürich, Switzerland)

  • Nima Gholizadeh Doonechaly

    (Department of Earth Sciences, ETH Zürich, 8092 Zürich, Switzerland)

  • Adrien Notzon

    (Enerdrape, 1015 Lausanne, Switzerland)

  • Ladislaus Rybach

    (Department of Earth Sciences, ETH Zürich, 8092 Zürich, Switzerland)

  • Marian Hertrich

    (Department of Earth Sciences, ETH Zürich, 8092 Zürich, Switzerland)

  • Domenico Giardini

    (Department of Earth Sciences, ETH Zürich, 8092 Zürich, Switzerland)

Abstract

This feasibility study investigates extracting thermal energy from the Bedretto tunnel in the Swiss Alps, which benefits from subsurface heat flux and rock overburden insulation. Using the simulation software COMSOL Multiphysics, we created a numerical model of the tunnel environment to evaluate which medium between rock, air, and water serves as the most effective heat source. Our findings indicate that flowing water is the most effective heat source. Potential applications include distributing the water to nearby villages and storing remaining heat in the subsurface. Estimates indicate that the total extractable thermal energy ranges between 0.8 MW th and 1.5 MW th after reducing the water temperature to 4 °C via a heat pump. The study identifies the most suitable energy sourcing locations based on efficiency and investment costs. Circulating water to individual heat pumps in Bedretto, with the natural elevation difference, enables water transport without a pump. Cost analyses reveal that the investment in piping and heat pumps can be amortized within the equipment’s lifespan with appropriate economic models. With the same initial investments, district heating systems are viable in villages with over 30 connections. The payback periods are 10 years for 60 connections, 4.5 years for 90 connections, and immediate for 200 connections.

Suggested Citation

  • Théo Halter & Nima Gholizadeh Doonechaly & Adrien Notzon & Ladislaus Rybach & Marian Hertrich & Domenico Giardini, 2024. "Exploring the Feasibility of Energy Extraction from the Bedretto Tunnel in Switzerland," Energies, MDPI, vol. 17(15), pages 1-29, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3669-:d:1442741
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/15/3669/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/15/3669/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chua, K.J. & Chou, S.K. & Yang, W.M., 2010. "Advances in heat pump systems: A review," Applied Energy, Elsevier, vol. 87(12), pages 3611-3624, December.
    2. Fleuchaus, Paul & Godschalk, Bas & Stober, Ingrid & Blum, Philipp, 2018. "Worldwide application of aquifer thermal energy storage – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 861-876.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aresti, Lazaros & Alvi, Maria Romana & Cecinato, Francesco & Fan, Tao & Halaj, Elzbieta & Li, Zili & Okhay, Olena & Poulsen, Soren Erbs & Quiroga, Sonia & Suarez, Cristina & Tang, Anh Minh & Valancius, 2024. "Energy geo-structures: A review of their integration with other sources and its limitations," Renewable Energy, Elsevier, vol. 230(C).
    2. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new waste heat district heating system with combined heat and power (CHP) based on ejector heat exchangers and absorption heat pumps," Energy, Elsevier, vol. 69(C), pages 516-524.
    3. Fredrik Skaug Fadnes & Reyhaneh Banihabib & Mohsen Assadi, 2023. "Using Artificial Neural Networks to Gather Intelligence on a Fully Operational Heat Pump System in an Existing Building Cluster," Energies, MDPI, vol. 16(9), pages 1-33, May.
    4. Jie, Ji & Jingyong, Cai & Wenzhu, Huang & Yan, Feng, 2015. "Experimental study on the performance of solar-assisted multi-functional heat pump based on enthalpy difference lab with solar simulator," Renewable Energy, Elsevier, vol. 75(C), pages 381-388.
    5. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new ejector heat exchanger based on an ejector heat pump and a water-to-water heat exchanger," Applied Energy, Elsevier, vol. 121(C), pages 245-251.
    6. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    7. Joana Verheyen & Christian Thommessen & Jürgen Roes & Harry Hoster, 2025. "Effects on the Unit Commitment of a District Heating System Due to Seasonal Aquifer Thermal Energy Storage and Solar Thermal Integration," Energies, MDPI, vol. 18(3), pages 1-33, January.
    8. Kayaci, Nurullah, 2020. "Energy and exergy analysis and thermo-economic optimization of the ground source heat pump integrated with radiant wall panel and fan-coil unit with floor heating or radiator," Renewable Energy, Elsevier, vol. 160(C), pages 333-349.
    9. Giovanni Murano & Francesca Caffari & Nicolandrea Calabrese, 2024. "Energy Potential of Existing Reversible Air-to-Air Heat Pumps for Residential Heating," Sustainability, MDPI, vol. 16(14), pages 1-23, July.
    10. Beernink, Stijn & Bloemendal, Martin & Kleinlugtenbelt, Rob & Hartog, Niels, 2022. "Maximizing the use of aquifer thermal energy storage systems in urban areas: effects on individual system primary energy use and overall GHG emissions," Applied Energy, Elsevier, vol. 311(C).
    11. Aste, Niccolò & Adhikari, R.S. & Manfren, Massimiliano, 2013. "Cost optimal analysis of heat pump technology adoption in residential reference buildings," Renewable Energy, Elsevier, vol. 60(C), pages 615-624.
    12. Treichel, Calene & Cruickshank, Cynthia A., 2021. "Energy analysis of heat pump water heaters coupled with air-based solar thermal collectors in Canada and the United States," Energy, Elsevier, vol. 221(C).
    13. Qi, Cuiting & Zhou, Renjie & Zhan, Hongbin, 2023. "Analysis of heat transfer in an aquifer thermal energy storage system: On the role of two-dimensional thermal conduction," Renewable Energy, Elsevier, vol. 217(C).
    14. Balghouthi, M. & Chahbani, M.H. & Guizani, A., 2012. "Investigation of a solar cooling installation in Tunisia," Applied Energy, Elsevier, vol. 98(C), pages 138-148.
    15. Mohamed, Elamin & Riffat, Saffa & Omer, Siddig & Zeinelabdein, Rami, 2019. "A comprehensive investigation of using mutual air and water heating in multi-functional DX-SAMHP for moderate cold climate," Renewable Energy, Elsevier, vol. 130(C), pages 582-600.
    16. Li, Sihui & Gong, Guangcai & Peng, Jinqing, 2019. "Dynamic coupling method between air-source heat pumps and buildings in China’s hot-summer/cold-winter zone," Applied Energy, Elsevier, vol. 254(C).
    17. Li, Shuangjun & Deng, Shuai & Zhao, Li & Zhao, Ruikai & Yuan, Xiangzhou, 2021. "Thermodynamic carbon pump 2.0: Elucidating energy efficiency through the thermodynamic cycle," Energy, Elsevier, vol. 215(PB).
    18. Ali, Hesham & Hlebnikov, Aleksandr & Pakere, Ieva & Volkova, Anna, 2024. "An evaluation and innovative coupling of seawater heat pumps in district heating networks," Energy, Elsevier, vol. 312(C).
    19. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    20. Cai, Jingyong & Zhang, Feng & Ji, Jie, 2020. "Comparative analysis of solar-air dual source heat pump system with different heat source configurations," Renewable Energy, Elsevier, vol. 150(C), pages 191-203.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3669-:d:1442741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.