IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i15p3620-d1441272.html
   My bibliography  Save this article

A Survey of Multi-Agent Systems for Smartgrids

Author

Listed:
  • Yusuf Izmirlioglu

    (Department of Computer Science, University of Roehampton, London SW15 5PH, UK
    Department of Computer Science, New Mexico State University, Las Cruces, NM 88003, USA)

  • Loc Pham

    (Department of Computer Science, New Mexico State University, Las Cruces, NM 88003, USA)

  • Tran Cao Son

    (Department of Computer Science, New Mexico State University, Las Cruces, NM 88003, USA)

  • Enrico Pontelli

    (Department of Computer Science, New Mexico State University, Las Cruces, NM 88003, USA)

Abstract

This paper provides a survey of the literature on the application of Multi-agent Systems (MAS) technology for Smartgrids. Smartgrids represent the next generation electric network, as communities are developing self-sufficient and environmentally friendly energy production. As a cyber-physical system, the development of the vision of Smartgrids requires the resolution of major technical problems; this has fed over a decade of research. Due to the stochastic, intermittent nature of renewable energy resources and the heterogeneity of the agents involved in a Smartgrid, demand and supply management, energy trade and control of grid elements constitute great challenges for stable operation. In addition, in order to offer resilience against faults and attacks, Smartgrids should also have restoration, self-recovery and security capabilities. Multi-agent systems (MAS) technology has been a popular approach to deal with these challenges in Smartgrids, due to their ability to support reasoning in a distributed context. This survey reviews the literature concerning the use of MAS models in each of the relevant research areas related to Smartgrids. The survey explores how researchers have utilized agent-based tools and methods to solve the main problems of Smartgrids. The survey also discusses the challenges in the advancement of Smartgrid technology and identifies the open problems for research from the view of multi-agent systems.

Suggested Citation

  • Yusuf Izmirlioglu & Loc Pham & Tran Cao Son & Enrico Pontelli, 2024. "A Survey of Multi-Agent Systems for Smartgrids," Energies, MDPI, vol. 17(15), pages 1-62, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3620-:d:1441272
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/15/3620/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/15/3620/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sang-Ji Lee & Jin-Young Choi & Hyung-Joo Lee & Dong-Jun Won, 2017. "Distributed Coordination Control Strategy for a Multi-Microgrid Based on a Consensus Algorithm," Energies, MDPI, vol. 10(7), pages 1-16, July.
    2. Li, Hongyan & Tesfatsion, Leigh, 2009. "Development of Open Source Software for Power Market Research: The AMES Test Bed," ISU General Staff Papers 200901010800001391, Iowa State University, Department of Economics.
    3. Dr. Sanya Carley, School of Public and Environmental Affairs, Indiana University & Sanya Carley, 2016. "Energy Programs of the American Recovery and Reinvestment Act of 2009," Review of Policy Research, Policy Studies Organization, vol. 33(2), pages 201-223, March.
    4. Egenhofer, Christian, 2007. "The Making of the EU Emissions Trading Scheme:: Status, Prospects and Implications for Business," European Management Journal, Elsevier, vol. 25(6), pages 453-463, December.
    5. Kalliopi Kravari & Nick Bassiliades, 2015. "A Survey of Agent Platforms," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(1), pages 1-11.
    6. Yuan Fan & Chengxiao Zhang & Cheng Song, 2018. "Sampling-based self-triggered coordination control for multi-agent systems with application to distributed generators," International Journal of Systems Science, Taylor & Francis Journals, vol. 49(15), pages 3048-3062, November.
    7. Freedman, Martin & Jaggi, Bikki, 2005. "Global warming, commitment to the Kyoto protocol, and accounting disclosures by the largest global public firms from polluting industries," The International Journal of Accounting, Elsevier, vol. 40(3), pages 215-232.
    8. Coelho, Vitor N. & Weiss Cohen, Miri & Coelho, Igor M. & Liu, Nian & Guimarães, Frederico Gadelha, 2017. "Multi-agent systems applied for energy systems integration: State-of-the-art applications and trends in microgrids," Applied Energy, Elsevier, vol. 187(C), pages 820-832.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian, Wei & Schaltegger, Stefan, 2017. "Revisiting carbon disclosure and performance: Legitimacy and management views," The British Accounting Review, Elsevier, vol. 49(4), pages 365-379.
    2. Shobole, Abdulfetah Abdela & Wadi, Mohammed, 2021. "Multiagent systems application for the smart grid protection," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. van Asselt, Harro & Brewer, Thomas, 2010. "Addressing competitiveness and leakage concerns in climate policy: An analysis of border adjustment measures in the US and the EU," Energy Policy, Elsevier, vol. 38(1), pages 42-51, January.
    4. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    5. Bikki Jaggi & Alessandra Allini & Riccardo Macchioni & Annamaria Zampella, 2018. "Do investors find carbon information useful? Evidence from Italian firms," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 1031-1056, May.
    6. Zhao, Bo & Chen, Jian & Zhang, Leiqi & Zhang, Xuesong & Qin, Ruwen & Lin, Xiangning, 2018. "Three representative island microgrids in the East China Sea: Key technologies and experiences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 262-274.
    7. Pinto, T. & Morais, H. & Oliveira, P. & Vale, Z. & Praça, I. & Ramos, C., 2011. "A new approach for multi-agent coalition formation and management in the scope of electricity markets," Energy, Elsevier, vol. 36(8), pages 5004-5015.
    8. Ishmael Tingbani & Lyton Chithambo & Venancio Tauringana & Nikolaos Papanikolaou, 2020. "Board gender diversity, environmental committee and greenhouse gas voluntary disclosures," Business Strategy and the Environment, Wiley Blackwell, vol. 29(6), pages 2194-2210, September.
    9. Kentaro Azuma & Akira Higashida, 2024. "Climate change disclosure and evolving institutional investor salience: Roles of the Principles for Responsible Investment," Business Strategy and the Environment, Wiley Blackwell, vol. 33(4), pages 3669-3686, May.
    10. Anvari-Moghaddam, Amjad & Rahimi-Kian, Ashkan & Mirian, Maryam S. & Guerrero, Josep M., 2017. "A multi-agent based energy management solution for integrated buildings and microgrid system," Applied Energy, Elsevier, vol. 203(C), pages 41-56.
    11. Krishnamurthy, Dheepak & Li, Wanning & Tesfatsion, Leigh, 2016. "An 8-Zone Test System Based on ISO New England Data: Development and Application," ISU General Staff Papers 201601010800001449, Iowa State University, Department of Economics.
    12. Tadahiro Taniguchi & Koki Kawasaki & Yoshiro Fukui & Tomohiro Takata & Shiro Yano, 2015. "Automated Linear Function Submission-Based Double Auction as Bottom-up Real-Time Pricing in a Regional Prosumers’ Electricity Network," Energies, MDPI, vol. 8(7), pages 1-26, July.
    13. Xiongfeng Deng & Xiyu Zhang, 2022. "Adaptive Fuzzy Tracking Control of Uncertain Nonlinear Multi-Agent Systems with Unknown Control Directions and a Dead-Zone Fault," Mathematics, MDPI, vol. 10(15), pages 1-19, July.
    14. Flachsland, Christian & Marschinski, Robert & Edenhofer, Ottmar, 2009. "Global trading versus linking: Architectures for international emissions trading," Energy Policy, Elsevier, vol. 37(5), pages 1637-1647, May.
    15. James J. Cordeiro & Giorgia Profumo & Ilaria Tutore, 2021. "Family ownership and stockholder reactions to environmental performance disclosure: A test of secondary agency relationships," Business Strategy and the Environment, Wiley Blackwell, vol. 30(4), pages 2091-2107, May.
    16. Lim, Taekyoung & Guzman, Tatyana S. & Bowen, William M., 2020. "Rhetoric and Reality: Jobs and the Energy Provisions of the American Recovery and Reinvestment Act," Energy Policy, Elsevier, vol. 137(C).
    17. Dong, Zhen & Li, Zhongguo & Liang, Zhongchao & Xu, Yiqiao & Ding, Zhengtao, 2021. "Distributed neural network enhanced power generation strategy of large-scale wind power plant for power expansion," Applied Energy, Elsevier, vol. 303(C).
    18. Dwi Ratmono & Darsono Darsono & Selviana Selviana, 2021. "Effect of Carbon Performance, Company Characteristics and Environmental Performance on Carbon Emission Disclosure: Evidence from Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 101-109.
    19. Antonio J. Mateo-Márquez & José M. González-González & Constancio Zamora-Ramírez, 2021. "Components of Countries’ Regulative Dimensions and Voluntary Carbon Disclosures," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    20. Jingpeng Yue & Zhijian Hu & Amjad Anvari-Moghaddam & Josep M. Guerrero, 2019. "A Multi-Market-Driven Approach to Energy Scheduling of Smart Microgrids in Distribution Networks," Sustainability, MDPI, vol. 11(2), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3620-:d:1441272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.