Comparative Analysis of Machine Learning Techniques in Predicting Wind Power Generation: A Case Study of 2018–2021 Data from Guatemala
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Mariano, Roberto S. & Preve, Daniel, 2012. "Statistical tests for multiple forecast comparison," Journal of Econometrics, Elsevier, vol. 169(1), pages 123-130.
- Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
- John Geweke, 2007. "Bayesian Model Comparison and Validation," American Economic Review, American Economic Association, vol. 97(2), pages 60-64, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Vanslette, Kevin & Tohme, Tony & Youcef-Toumi, Kamal, 2020. "A general model validation and testing tool," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
- Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
- Faust, Jon & Gupta, Abhishek, 2010.
"Posterior Predictive Analysis for Evaluating DSGE Models,"
MPRA Paper
26721, University Library of Munich, Germany.
- Jon Faust & Abhishek Gupta, 2012. "Posterior Predictive Analysis for Evaluating DSGE Models," NBER Working Papers 17906, National Bureau of Economic Research, Inc.
- Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Marian Vavra, 2015. "On a Bootstrap Test for Forecast Evaluations," Working and Discussion Papers WP 5/2015, Research Department, National Bank of Slovakia.
- Linlin Yu & Jiafeng Wu & Yuming Cheng & Gaojun Meng & Shuyu Chen & Yang Lu & Ke Xu, 2024. "Control Strategy for Wind Farms-Energy Storage Participation in Primary Frequency Regulation Considering Wind Turbine Operation State," Energies, MDPI, vol. 17(14), pages 1-13, July.
- Shengli Liao & Xudong Tian & Benxi Liu & Tian Liu & Huaying Su & Binbin Zhou, 2022. "Short-Term Wind Power Prediction Based on LightGBM and Meteorological Reanalysis," Energies, MDPI, vol. 15(17), pages 1-21, August.
- Wang, Xiaodi & Hao, Yan & Yang, Wendong, 2024. "Novel wind power ensemble forecasting system based on mixed-frequency modeling and interpretable base model selection strategy," Energy, Elsevier, vol. 297(C).
- Cheung, Yin-Wong & Hui, Cho-Hoi & Tsang, Andrew, 2018.
"The RMB central parity formation mechanism: August 2015 to December 2016,"
Journal of International Money and Finance, Elsevier, vol. 86(C), pages 223-243.
- Yin-Wong Cheung & Cho-Hoi Hui & Andrew Tsang, 2018. "The RMB Central Parity Formation Mechanism: August 2015 to December 2016," GRU Working Paper Series GRU_2018_010, City University of Hong Kong, Department of Economics and Finance, Global Research Unit.
- Chen, Fuhao & Yan, Jie & Liu, Yongqian & Yan, Yamin & Tjernberg, Lina Bertling, 2024. "A novel meta-learning approach for few-shot short-term wind power forecasting," Applied Energy, Elsevier, vol. 362(C).
- Drachal, Krzysztof, 2021. "Forecasting crude oil real prices with averaging time-varying VAR models," Resources Policy, Elsevier, vol. 74(C).
- Antonio Merlo & Thomas R. Palfrey, 2018.
"External validation of voter turnout models by concealed parameter recovery,"
Public Choice, Springer, vol. 176(1), pages 297-314, July.
- Antonio Merlo & Thomas R.Palfrey, 2013. "External Validation of Voter Turnout Models by Concealed Parameter Recovery," PIER Working Paper Archive 13-012, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Merlo, Antonio & Palfrey, Thomas R., 2014. "External Validation of Voter Turnout Models by Concealed Parameter Recovery," Working Papers 14-015, Rice University, Department of Economics.
- Wang, Jianzhou & Wang, Shuai & Zeng, Bo & Lu, Haiyan, 2022. "A novel ensemble probabilistic forecasting system for uncertainty in wind speed," Applied Energy, Elsevier, vol. 313(C).
- Liu, Cheng & Wang, Wei & Wang, Zhixia & Ding, Bei & Wu, Zhiqiang & Feng, Jingjing, 2024. "Data-driven modeling and fast adjustment for digital coded metasurfaces database: Application in adaptive electromagnetic energy harvesting," Applied Energy, Elsevier, vol. 365(C).
- Christopher Jung, 2024. "Recent Development and Future Perspective of Wind Power Generation," Energies, MDPI, vol. 17(21), pages 1-5, October.
- Zixiang Yan & Wen Zhou & Jinxiao Li & Xuedan Zhu & Yuxin Zang & Liuyi Zhang, 2024. "Skillful Seasonal Prediction of Global Onshore Wind Resources in SIDRI-ESS V1.0," Sustainability, MDPI, vol. 16(17), pages 1-16, September.
- Kwan, Yum K. & Leung, Charles Ka Yui & Dong, Jinyue, 2015.
"Comparing consumption-based asset pricing models: The case of an Asian city,"
Journal of Housing Economics, Elsevier, vol. 28(C), pages 18-41.
- Kwan, Yum K. & Leung, Charles Ka Yui & Dong, Jinyue, 2014. "Comparing Consumption-based Asset Pricing Models: The Case of an Asian City," MPRA Paper 60513, University Library of Munich, Germany.
- Kim, Daeyoung & Ryu, Geonhwa & Moon, Chaejoo & Kim, Bumsuk, 2024. "Accuracy of a short-term wind power forecasting model based on deep learning using LiDAR-SCADA integration: A case study of the 400-MW Anholt offshore wind farm," Applied Energy, Elsevier, vol. 373(C).
- Rehman, Mobeen Ur & Owusu Junior, Peterson & Ahmad, Nasir & Vo, Xuan Vinh, 2022. "Time-varying risk analysis for commodity futures," Resources Policy, Elsevier, vol. 78(C).
- Bhagwan, N. & Evans, M., 2023. "A review of industry 4.0 technologies used in the production of energy in China, Germany, and South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
More about this item
Keywords
wind power forecasting; deep learning; machine learning; grid management; renewable energy; smart grids; meteorological data absence; Diebold–Mariano test; Bayesian model comparison;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3158-:d:1422773. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.