IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i13p3338-d1430642.html
   My bibliography  Save this article

Application of CFD Simulation to the Design of an Innovative Drying Chamber

Author

Listed:
  • Damian Cebulski

    (Faculty of Mechanical Engineering, Cracow University of Technology, al. Jana Pawla II 37, 31-864 Kraków, Poland)

  • Piotr Cyklis

    (Faculty of Mechanical Engineering, Cracow University of Technology, al. Jana Pawla II 37, 31-864 Kraków, Poland)

Abstract

Drying and sanitising equipment has been very common in industrial plants since the pandemic. These are devices that consume significant amounts of energy. The best solution is to use a drying chamber equipped with a heat pump, which allows partial recovery of the energy. In the design of the drying chamber, the drying time is important, which depends both on the parameters of the heat pump itself, and the geometry and airflow of the drying chamber. The geometry and airflow supply should be arranged to ensure a uniform distribution of velocity throughout the drying area. For this purpose, the use of CFD simulations has been proposed. A model was developed in ANSYS/FLUENT where all model parameters, including the optimal mesh density, turbulence models, etc., were determined. The model was verified on the experimental results of the basic design of the chamber. Then an innovative design was proposed that was modelled and optimised in terms of the distribution of the inlet’s perforation. The final design was made, and, at the same time, the simulation’s results were verified by measuring the velocity of airflow in the new design. Together with the optimisation of the heat pump, this made it possible to reduce the drying time by 50%, with a simultaneous reduction in the energy consumed.

Suggested Citation

  • Damian Cebulski & Piotr Cyklis, 2024. "Application of CFD Simulation to the Design of an Innovative Drying Chamber," Energies, MDPI, vol. 17(13), pages 1-22, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3338-:d:1430642
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/13/3338/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/13/3338/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hai-Bo Zhao & Kun Wu & Jing-Feng Zhang, 2021. "Simulation Study on Active Air Flow Distribution Characteristics of Closed Heat Pump Drying System with Waste Heat Recovery," Energies, MDPI, vol. 14(19), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye Zhang & Bin Li & Zhenfeng He & Wenyan Ou & Jiahao Zhong & Xuefeng Zhang & Mingang Meng & Changyou Li, 2022. "Temperature Field Simulation and Energy Analysis of a Heat Pump Tobacco Bulk Curing Barn," Energies, MDPI, vol. 15(22), pages 1-16, November.
    2. Sun, Wei & Zhang, Xudong & Liu, Bingxue & Zhao, Lixin & Cheng, Qinglin & Wang, Zhihua, 2024. "Analysis of the main influencing factors of waste heat utilization effectiveness in the tank storage receiving process of waxy crude oil under dynamic liquid level conditions," Renewable Energy, Elsevier, vol. 228(C).

    More about this item

    Keywords

    CFD simulation; drying chamber design;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3338-:d:1430642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.