Author
Listed:
- Damian Cebulski
(Faculty of Mechanical Engineering, Cracow University of Technology, al. Jana Pawla II 37, 31-864 Kraków, Poland)
- Piotr Cyklis
(Faculty of Mechanical Engineering, Cracow University of Technology, al. Jana Pawla II 37, 31-864 Kraków, Poland)
Abstract
Common designs of workwear drying units require not only energy efficiency but also effective disinfection. One possibility of sanitising clothes during drying is to use the ozone generated inside the drying chamber. This process requires precise management of airflow and a uniform distribution of ozone in the chamber. Therefore, optimising the shape of the drying chamber must include not only the correct flow of drying air but also the correct distribution of ozone. This paper addresses the difficult problem of modelling the flow of sanitising ozone in an innovative drying chamber. The innovative shape of the chamber is shown in this article. Due to the low percentage of ozone in the air (up to 10 ppm), CFD simulation models of the usual mixture type are too inaccurate; therefore, special models have to be used. Therefore, this paper presents an experimentally verified methodology to simulate ozone flow in an innovative drying and sanitising cabinet using two methods: Discrete Phase Model (DPM) and Species Transport (ST). The DPM method uses a Euler–Lagrange approach to qualitatively assess the spread of ozone particles, treated with a description of the movement of the particles and not as a continuous gaseous substance. On the other hand, this already allows the verification of ozone concentrations, with an appropriate conversion of the measured quantities. The ANSYS/FLUENT 2023R1 program was used for the simulations after careful selection of the mesh, closing models, boundary conditions, etc. Simulations made it possible to analyse the distribution of ozone in the workspace and assess the effectiveness of the sanitisation process. The results of the simulations were verified on the basis of empirical tests, which showed the correctness of the model and the correct distribution of the sanitising ozone in the entire volume of the drying chamber in the innovative drying–sanitising chamber. The complete simulation of the air and ozone distribution using the presented models allowed for the optimisation of the opening and shapes, which contributed to improving the energy efficiency of the unit and increasing the efficiency of the sanitisation processes, making the described methodology very effective for optimising the chambers of various types of dryers.
Suggested Citation
Damian Cebulski & Piotr Cyklis, 2024.
"Simulation of Ozone Distribution in an Innovative Drying and Sanitising Cabinet Chamber,"
Energies, MDPI, vol. 17(22), pages 1-16, November.
Handle:
RePEc:gam:jeners:v:17:y:2024:i:22:p:5803-:d:1525357
Download full text from publisher
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5803-:d:1525357. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.