IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i13p3140-d1422150.html
   My bibliography  Save this article

Blockchain-Based Joint Auction Model for Distributed Energy in Industrial Park Microgrids

Author

Listed:
  • Li Wang

    (Guangzhou Power Supply Bureau of Guangdong Power Grid Co., Ltd., Guangzhou 510510, China)

  • Zihao Zhang

    (China Southern Power Grid Digital Power Grid Research Institute Co., Ltd., Guangzhou 510700, China)

  • Jinheng Fan

    (Guangzhou Power Supply Bureau of Guangdong Power Grid Co., Ltd., Guangzhou 510510, China)

  • Shunqi Zeng

    (Guangzhou Power Supply Bureau of Guangdong Power Grid Co., Ltd., Guangzhou 510510, China)

  • Shixian Pan

    (China Southern Power Grid Digital Power Grid Research Institute Co., Ltd., Guangzhou 510700, China)

  • Haoyong Chen

    (School of Electric Power Engineering, South China University of Technology, Guangzhou 510641, China)

Abstract

To address the centralized trading demand within industrial parks and the scattered peer-to-peer trading demand outside industrial parks, this paper proposes a blockchain-based joint auction architecture for distributed energy in microgrids inside and outside industrial parks. By combining blockchain technology and auction theory, the architecture integrates the physical energy transactions within industrial parks with the distributed transactions in external microgrids to meet the centralized trading demand within industrial parks and the scattered peer-to-peer trading demand outside industrial parks, optimizing resource allocation and improving system resilience. In the microgrid auction mechanism for industrial parks, considering distributed energy providers (sellers) and distributed energy buyers, an auction mechanism with power transmission distance, average electricity price, and enterprise nature as its main attributes was constructed to maximize social welfare, realizing efficient energy flow in a multi-microgrid environment and enabling coordinated mutual benefits for producers and consumers within the region. Finally, a case study was conducted on the joint auction mechanism for microgrids inside and outside industrial parks, including the impacts of market dynamics and user preferences on electricity prices using different trading methods, the computational results using different trading matching methods (comparing single-attribute and multi-attribute methods), and multi-dimensional verification of user satisfaction with peer-to-peer transactions in a blockchain environment. The effectiveness of the joint trading between physical energy transactions within industrial parks and external microgrids was demonstrated, which could efficiently coordinate energy allocation inside and outside the parks and reduce the cost of energy configuration.

Suggested Citation

  • Li Wang & Zihao Zhang & Jinheng Fan & Shunqi Zeng & Shixian Pan & Haoyong Chen, 2024. "Blockchain-Based Joint Auction Model for Distributed Energy in Industrial Park Microgrids," Energies, MDPI, vol. 17(13), pages 1-15, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3140-:d:1422150
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/13/3140/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/13/3140/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiang, Yanni & Zhou, Kaile & Lu, Xinhui & Yang, Shanlin, 2020. "Electricity trading pricing among prosumers with game theory-based model in energy blockchain environment," Applied Energy, Elsevier, vol. 271(C).
    2. Chen, Kaixuan & Lin, Jin & Song, Yonghua, 2019. "Trading strategy optimization for a prosumer in continuous double auction-based peer-to-peer market: A prediction-integration model," Applied Energy, Elsevier, vol. 242(C), pages 1121-1133.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Jiawei & Paudel, Amrit & Gooi, Hoay Beng & Nguyen, Hung Dinh, 2021. "A Proof-of-Stake public blockchain based pricing scheme for peer-to-peer energy trading," Applied Energy, Elsevier, vol. 298(C).
    2. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    3. Dong, Jingya & Song, Chunhe & Liu, Shuo & Yin, Huanhuan & Zheng, Hao & Li, Yuanjian, 2022. "Decentralized peer-to-peer energy trading strategy in energy blockchain environment: A game-theoretic approach," Applied Energy, Elsevier, vol. 325(C).
    4. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K., 2021. "Cooperative negawatt P2P energy trading for low-voltage distribution networks," Applied Energy, Elsevier, vol. 299(C).
    5. Liu, Jicheng & Sun, Jiakang & Yuan, Hanying & Su, Yihan & Feng, Shuxian & Lu, Chaoran, 2022. "Behavior analysis of photovoltaic-storage-use value chain game evolution in blockchain environment," Energy, Elsevier, vol. 260(C).
    6. Gayo-Abeleira, Miguel & Santos, Carlos & Javier Rodríguez Sánchez, Francisco & Martín, Pedro & Antonio Jiménez, José & Santiso, Enrique, 2022. "Aperiodic two-layer energy management system for community microgrids based on blockchain strategy," Applied Energy, Elsevier, vol. 324(C).
    7. Tsao, Yu-Chung & Thanh, Vo-Van, 2021. "Toward sustainable microgrids with blockchain technology-based peer-to-peer energy trading mechanism: A fuzzy meta-heuristic approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    8. Nieta, Agustín A. Sánchez de la & Ilieva, Iliana & Gibescu, Madeleine & Bremdal, Bernt & Simonsen, Stig & Gramme, Eivind, 2021. "Optimal midterm peak shaving cost in an electricity management system using behind customers’ smart meter configuration," Applied Energy, Elsevier, vol. 283(C).
    9. Mahfuzur Rahman & Solaiman Chowdhury & Mohammad Shorfuzzaman & Mohammad Kamal Hossain & Mohammad Hammoudeh, 2023. "Peer-to-Peer Power Energy Trading in Blockchain Using Efficient Machine Learning Model," Sustainability, MDPI, vol. 15(18), pages 1-15, September.
    10. Odin Foldvik Eikeland & Filippo Maria Bianchi & Harry Apostoleris & Morten Hansen & Yu-Cheng Chiou & Matteo Chiesa, 2021. "Predicting Energy Demand in Semi-Remote Arctic Locations," Energies, MDPI, vol. 14(4), pages 1-17, February.
    11. Huizhu Ju & Qingcheng Zeng & Xiang Chu & Yimeng Li, 2024. "Cooperative investment strategies of ports and shipping companies in blockchain technology," Operational Research, Springer, vol. 24(2), pages 1-33, June.
    12. García-Muñoz, Fernando & Dávila, Sebastián & Quezada, Franco, 2023. "A Benders decomposition approach for solving a two-stage local energy market problem under uncertainty," Applied Energy, Elsevier, vol. 329(C).
    13. Shan, Shan & Ahmad, Munir & Tan, Zhixiong & Adebayo, Tomiwa Sunday & Man Li, Rita Yi & Kirikkaleli, Dervis, 2021. "The role of energy prices and non-linear fiscal decentralization in limiting carbon emissions: Tracking environmental sustainability," Energy, Elsevier, vol. 234(C).
    14. Abdullah M. Alabdullatif & Enrico H. Gerding & Alvaro Perez-Diaz, 2020. "Market Design and Trading Strategies for Community Energy Markets with Storage and Renewable Supply," Energies, MDPI, vol. 13(4), pages 1-31, February.
    15. Esmat, Ayman & de Vos, Martijn & Ghiassi-Farrokhfal, Yashar & Palensky, Peter & Epema, Dick, 2021. "A novel decentralized platform for peer-to-peer energy trading market with blockchain technology," Applied Energy, Elsevier, vol. 282(PA).
    16. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    17. Evgenia Kapassa & Marinos Themistocleous, 2022. "Blockchain Technology Applied in IoV Demand Response Management: A Systematic Literature Review," Future Internet, MDPI, vol. 14(5), pages 1-19, April.
    18. Siripha Junlakarn & Phimsupha Kokchang & Kulyos Audomvongseree, 2022. "Drivers and Challenges of Peer-to-Peer Energy Trading Development in Thailand," Energies, MDPI, vol. 15(3), pages 1-25, February.
    19. Herenčić, Lin & Kirac, Mislav & Keko, Hrvoje & Kuzle, Igor & Rajšl, Ivan, 2022. "Automated energy sharing in MV and LV distribution grids within an energy community: A case for Croatian city of Križevci with a hybrid renewable system," Renewable Energy, Elsevier, vol. 191(C), pages 176-194.
    20. Bochun Zhan & Changsen Feng & Zhemin Lin & Xiaoyu Shao & Fushuan Wen, 2023. "Peer-to-Peer Energy Trading among Prosumers with Voltage Regulation Services Provision," Energies, MDPI, vol. 16(14), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3140-:d:1422150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.