IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i12p3037-d1418560.html
   My bibliography  Save this article

Evaluation of Thermal Properties of Various Insulating Liquids Used in Power Transformers

Author

Listed:
  • Zbigniew Nadolny

    (Institute of Electric Power Engineering, Faculty of Environmental Engineering and Energy, Poznan University of Technology, 60-965 Poznan, Poland)

Abstract

This article is a summary of many years of work by the author, in which the thermal properties of various types of insulating liquids, used in power transformers, were evaluated. Recently, esters have been displacing mineral oil. There is a common view that mineral oil has better thermal properties than esters. This claim is supported by comparative results of tests of both materials as a liquid only filling the remaining volume of the transformer. The effect of the type of liquid on the thermal properties of the paper–oil insulation has not been analyzed so far. On this basis, the conclusions formulated may be incomplete. For this reason, the author has analyzed the influence of the type of liquid on both the thermal properties of the liquid filling the remaining volume of the transformer and the paper–oil insulation. It was proved that the more effective liquid filling the remaining volume of the transformer was indeed mineral oil. On the other hand, a more effective electrical insulating liquid, which is an element of paper–oil insulation, is a natural ester. A comprehensive assessment that takes into account both the paper–oil insulation and the remaining transformer volume showed that the natural ester proved to be a slightly more effective electrical insulating liquid than the other analyzed liquids.

Suggested Citation

  • Zbigniew Nadolny, 2024. "Evaluation of Thermal Properties of Various Insulating Liquids Used in Power Transformers," Energies, MDPI, vol. 17(12), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:3037-:d:1418560
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/12/3037/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/12/3037/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grzegorz Dombek & Zbigniew Nadolny & Piotr Przybylek & Radoslaw Lopatkiewicz & Agnieszka Marcinkowska & Lukasz Druzynski & Tomasz Boczar & Andrzej Tomczewski, 2020. "Effect of Moisture on the Thermal Conductivity of Cellulose and Aramid Paper Impregnated with Various Dielectric Liquids," Energies, MDPI, vol. 13(17), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maciej Zdanowski, 2022. "Streaming Electrification of C 60 Fullerene Doped Insulating Liquids for Power Transformers Applications," Energies, MDPI, vol. 15(7), pages 1-14, March.
    2. Fatih Atalar & Aysel Ersoy & Pawel Rozga, 2022. "Investigation of Effects of Different High Voltage Types on Dielectric Strength of Insulating Liquids," Energies, MDPI, vol. 15(21), pages 1-25, October.
    3. Pawel Rozga & Abderrahmane Beroual & Piotr Przybylek & Maciej Jaroszewski & Konrad Strzelecki, 2020. "A Review on Synthetic Ester Liquids for Transformer Applications," Energies, MDPI, vol. 13(23), pages 1-33, December.
    4. Stefan Wolny & Adam Krotowski, 2020. "Analysis of Polarization and Depolarization Currents of Samples of NOMEX ® 910 Cellulose–Aramid Insulation Impregnated with Mineral Oil," Energies, MDPI, vol. 13(22), pages 1-18, November.
    5. Krzysztof Łowczowski & Jacek Roman, 2023. "Techno-Economic Analysis of Alternative PV Orientations in Poland by Rescaling Real PV Profiles," Energies, MDPI, vol. 16(17), pages 1-18, August.
    6. Maurizio Fantauzzi & Davide Lauria & Fabio Mottola & Daniela Proto, 2021. "Estimating Wind Farm Transformers Rating through Lifetime Characterization Based on Stochastic Modeling of Wind Power," Energies, MDPI, vol. 14(5), pages 1-16, March.
    7. Zbigniew Nadolny, 2022. "Impact of Changes in Limit Values of Electric and Magnetic Field on Personnel Performing Diagnostics of Transformers," Energies, MDPI, vol. 15(19), pages 1-15, October.
    8. Pawel Rozga & Abderahhmane Beroual, 2021. "High Voltage Insulating Materials—Current State and Prospects," Energies, MDPI, vol. 14(13), pages 1-4, June.
    9. Adam Krotowski & Stefan Wolny, 2022. "Analysis of Polarization and Depolarization Currents of Samples of NOMEX ® 910 Cellulose–Aramid Insulation Impregnated with Synthetic Ester," Energies, MDPI, vol. 15(9), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:3037-:d:1418560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.