IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i12p2819-d1411212.html
   My bibliography  Save this article

Cost-Optimality Assessment of a Solar Trigeneration System for Tertiary Sector Buildings in Greece

Author

Listed:
  • Dimitrios Tziritas

    (MES Energy S.A., Aiolou Str. No. 67, 10559 Athens, Greece)

  • Konstantinos Braimakis

    (Laboratory of Refrigeration, Air Conditioning & Solar Energy, National Technical University of Athens, 9 Heroon Polytechniou Str., 15780 Zografou, Greece)

  • Dimitris Bakirtzis

    (MES Energy S.A., Aiolou Str. No. 67, 10559 Athens, Greece)

  • George M. Stavrakakis

    (MES Energy S.A., Aiolou Str. No. 67, 10559 Athens, Greece
    Department of Mechanical Engineering, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece)

  • Sofia Yfanti

    (Department of Mechanical Engineering, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece)

  • Konstantinos Terzis

    (MES Energy S.A., Aiolou Str. No. 67, 10559 Athens, Greece)

  • Panagiotis Langouranis

    (MES Energy S.A., Aiolou Str. No. 67, 10559 Athens, Greece)

  • Panagiotis L. Zervas

    (MES Energy S.A., Aiolou Str. No. 67, 10559 Athens, Greece)

  • Sotirios Karellas

    (Laboratory of Thermal Processes, National Technical University of Athens, 9 Heroon Polytechniou Str., 15780 Zografou, Greece)

Abstract

To pave the way towards buildings’ decarbonization in the context of the European Union’s (EU) policy, the methodology of cost-optimality assessment based on regulation 244/2012/EU is a useful tool to explore and foster the application of energy technologies in buildings. Meanwhile, the fostering of concentrated solar power is included in the EU solar energy strategy. In this study, the cost-optimal methodology is employed for the techno-economic assessment of the integration of a novel solar, multi-purpose energy technology, namely a parabolic trough collector-based trigeneration system, in two building types with different characteristics, namely an office and a hospital, in Greece, thus allowing the evaluation of the cost-optimal system design and the impact of the building type on the system’s techno-economic performance. Reference buildings are defined and their energy demand is calculated through dynamic energy simulations. The trigeneration system’s performance for different design scenarios is then parametrically investigated using a simulation model. For each scenario, energy, environmental and economic indicators are calculated and the cost-optimal designs are extracted. In the cost-optimal implementation, the system covered 18.19–36.39% and 3.58–15.71% of the heating and cooling demand, respectively, while the reduction of the primary energy consumption and emissions was estimated at 10–14% and 10–16%, respectively. However, differences between the buildings related to the operation schedule and the loads led to the implementation of the system being economically more attractive in the hospital, while for the office, financial support is necessary for a viable investment.

Suggested Citation

  • Dimitrios Tziritas & Konstantinos Braimakis & Dimitris Bakirtzis & George M. Stavrakakis & Sofia Yfanti & Konstantinos Terzis & Panagiotis Langouranis & Panagiotis L. Zervas & Sotirios Karellas, 2024. "Cost-Optimality Assessment of a Solar Trigeneration System for Tertiary Sector Buildings in Greece," Energies, MDPI, vol. 17(12), pages 1-34, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2819-:d:1411212
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/12/2819/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/12/2819/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dimitrios Tziritas & George M. Stavrakakis & Dimitris Bakirtzis & George Kaplanis & Konstantinos Patlitzianas & Markos Damasiotis & Panagiotis L. Zervas, 2023. "Techno-Economic Analysis of a Hydrogen-Based Power Supply Backup System for Tertiary Sector Buildings: A Case Study in Greece," Sustainability, MDPI, vol. 15(9), pages 1-23, May.
    2. Corgnati, Stefano Paolo & Fabrizio, Enrico & Filippi, Marco & Monetti, Valentina, 2013. "Reference buildings for cost optimal analysis: Method of definition and application," Applied Energy, Elsevier, vol. 102(C), pages 983-993.
    3. Emmanuel N. Efthymiou & Sofia Yfanti & George Kyriakarakos & Panagiotis L. Zervas & Panagiotis Langouranis & Konstantinos Terzis & George M. Stavrakakis, 2022. "A Practical Methodology for Building a Municipality-Led Renewable Energy Community: A Photovoltaics-Based Case Study for the Municipality of Hersonissos in Crete, Greece," Sustainability, MDPI, vol. 14(19), pages 1-31, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Constantinos A. Balaras & Andreas I. Theodoropoulos & Elena G. Dascalaki, 2023. "Geographic Information Systems for Facilitating Audits of the Urban Built Environment," Energies, MDPI, vol. 16(11), pages 1-26, May.
    2. Baglivo, Cristina & Congedo, Paolo Maria & D'Agostino, Delia & Zacà, Ilaria, 2015. "Cost-optimal analysis and technical comparison between standard and high efficient mono-residential buildings in a warm climate," Energy, Elsevier, vol. 83(C), pages 560-575.
    3. Pikas, Ergo & Thalfeldt, Martin & Kurnitski, Jarek & Liias, Roode, 2015. "Extra cost analyses of two apartment buildings for achieving nearly zero and low energy buildings," Energy, Elsevier, vol. 84(C), pages 623-633.
    4. Brandão de Vasconcelos, Ana & Pinheiro, Manuel Duarte & Manso, Armando & Cabaço, António, 2015. "A Portuguese approach to define reference buildings for cost-optimal methodologies," Applied Energy, Elsevier, vol. 140(C), pages 316-328.
    5. Younghoon Kwak & Jeonga Kang & Sun-Hye Mun & Young-Sun Jeong & Jung-Ho Huh, 2020. "Development and Application of a Flexible Modeling Approach to Reference Buildings for Energy Analysis," Energies, MDPI, vol. 13(21), pages 1-22, November.
    6. Bienvenido-Huertas, David & Moyano, Juan & Rodríguez-Jiménez, Carlos E. & Marín, David, 2019. "Applying an artificial neural network to assess thermal transmittance in walls by means of the thermometric method," Applied Energy, Elsevier, vol. 233, pages 1-14.
    7. George M. Stavrakakis & Dimitris Bakirtzis & Korina-Konstantina Drakaki & Sofia Yfanti & Dimitris Al. Katsaprakakis & Konstantinos Braimakis & Panagiotis Langouranis & Konstantinos Terzis & Panagiotis, 2024. "Application of the Typology Approach for Energy Renovation Planning of Public Buildings’ Stocks at the Local Level: A Case Study in Greece," Energies, MDPI, vol. 17(3), pages 1-30, January.
    8. Aste, Niccolò & Adhikari, R.S. & Manfren, Massimiliano, 2013. "Cost optimal analysis of heat pump technology adoption in residential reference buildings," Renewable Energy, Elsevier, vol. 60(C), pages 615-624.
    9. Szalay, Zsuzsa & Zöld, András, 2014. "Definition of nearly zero-energy building requirements based on a large building sample," Energy Policy, Elsevier, vol. 74(C), pages 510-521.
    10. Delmastro, C. & Martinsson, F. & Dulac, J. & Corgnati, S.P., 2017. "Sustainable urban heat strategies: Perspectives from integrated district energy choices and energy conservation in buildings. Case studies in Torino and Stockholm," Energy, Elsevier, vol. 138(C), pages 1209-1220.
    11. Eleftheria Touloupaki & Theodoros Theodosiou, 2017. "Optimization of External Envelope Insulation Thickness: A Parametric Study," Energies, MDPI, vol. 10(3), pages 1-19, February.
    12. Ascione, Fabrizio & Bianco, Nicola & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2019. "A new comprehensive framework for the multi-objective optimization of building energy design: Harlequin," Applied Energy, Elsevier, vol. 241(C), pages 331-361.
    13. Attia, Shady & Canonge, Théophile & Popineau, Mathieu & Cuchet, Mathilde, 2022. "Developing a benchmark model for renovated, nearly zero-energy, terraced dwellings," Applied Energy, Elsevier, vol. 306(PB).
    14. Younghoon Kwak & Jeong-A Kang & Jung-Ho Huh & Tae-Hyoung Kim & Young-Sun Jeong, 2019. "An Analysis of the Effectiveness of Greenhouse Gas Reduction Policy for Office Building Design in South Korea," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    15. D'Agostino, D. & Parker, D. & Epifani, I. & Crawley, D. & Lawrie, L., 2022. "How will future climate impact the design and performance of nearly zero energy buildings (NZEBs)?," Energy, Elsevier, vol. 240(C).
    16. Hye-Ryeong Nam & Seo-Hoon Kim & Seol-Yee Han & Sung-Jin Lee & Won-Hwa Hong & Jong-Hun Kim, 2020. "Statistical Methodology for the Definition of Standard Model for Energy Analysis of Residential Buildings in Korea," Energies, MDPI, vol. 13(21), pages 1-16, November.
    17. Umberto Berardi & Lamberto Tronchin & Massimiliano Manfren & Benedetto Nastasi, 2018. "On the Effects of Variation of Thermal Conductivity in Buildings in the Italian Construction Sector," Energies, MDPI, vol. 11(4), pages 1-17, April.
    18. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2017. "Artificial neural networks to predict energy performance and retrofit scenarios for any member of a building category: A novel approach," Energy, Elsevier, vol. 118(C), pages 999-1017.
    19. Filogamo, Luana & Peri, Giorgia & Rizzo, Gianfranco & Giaccone, Antonino, 2014. "On the classification of large residential buildings stocks by sample typologies for energy planning purposes," Applied Energy, Elsevier, vol. 135(C), pages 825-835.
    20. Hye-Jin Kim & Do-Young Choi & Donghyun Seo, 2021. "Development and Verification of Prototypical Office Buildings Models Using the National Building Energy Consumption Survey in Korea," Sustainability, MDPI, vol. 13(7), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2819-:d:1411212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.