IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i12p2819-d1411212.html
   My bibliography  Save this article

Cost-Optimality Assessment of a Solar Trigeneration System for Tertiary Sector Buildings in Greece

Author

Listed:
  • Dimitrios Tziritas

    (MES Energy S.A., Aiolou Str. No. 67, 10559 Athens, Greece)

  • Konstantinos Braimakis

    (Laboratory of Refrigeration, Air Conditioning & Solar Energy, National Technical University of Athens, 9 Heroon Polytechniou Str., 15780 Zografou, Greece)

  • Dimitris Bakirtzis

    (MES Energy S.A., Aiolou Str. No. 67, 10559 Athens, Greece)

  • George M. Stavrakakis

    (MES Energy S.A., Aiolou Str. No. 67, 10559 Athens, Greece
    Department of Mechanical Engineering, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece)

  • Sofia Yfanti

    (Department of Mechanical Engineering, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece)

  • Konstantinos Terzis

    (MES Energy S.A., Aiolou Str. No. 67, 10559 Athens, Greece)

  • Panagiotis Langouranis

    (MES Energy S.A., Aiolou Str. No. 67, 10559 Athens, Greece)

  • Panagiotis L. Zervas

    (MES Energy S.A., Aiolou Str. No. 67, 10559 Athens, Greece)

  • Sotirios Karellas

    (Laboratory of Thermal Processes, National Technical University of Athens, 9 Heroon Polytechniou Str., 15780 Zografou, Greece)

Abstract

To pave the way towards buildings’ decarbonization in the context of the European Union’s (EU) policy, the methodology of cost-optimality assessment based on regulation 244/2012/EU is a useful tool to explore and foster the application of energy technologies in buildings. Meanwhile, the fostering of concentrated solar power is included in the EU solar energy strategy. In this study, the cost-optimal methodology is employed for the techno-economic assessment of the integration of a novel solar, multi-purpose energy technology, namely a parabolic trough collector-based trigeneration system, in two building types with different characteristics, namely an office and a hospital, in Greece, thus allowing the evaluation of the cost-optimal system design and the impact of the building type on the system’s techno-economic performance. Reference buildings are defined and their energy demand is calculated through dynamic energy simulations. The trigeneration system’s performance for different design scenarios is then parametrically investigated using a simulation model. For each scenario, energy, environmental and economic indicators are calculated and the cost-optimal designs are extracted. In the cost-optimal implementation, the system covered 18.19–36.39% and 3.58–15.71% of the heating and cooling demand, respectively, while the reduction of the primary energy consumption and emissions was estimated at 10–14% and 10–16%, respectively. However, differences between the buildings related to the operation schedule and the loads led to the implementation of the system being economically more attractive in the hospital, while for the office, financial support is necessary for a viable investment.

Suggested Citation

  • Dimitrios Tziritas & Konstantinos Braimakis & Dimitris Bakirtzis & George M. Stavrakakis & Sofia Yfanti & Konstantinos Terzis & Panagiotis Langouranis & Panagiotis L. Zervas & Sotirios Karellas, 2024. "Cost-Optimality Assessment of a Solar Trigeneration System for Tertiary Sector Buildings in Greece," Energies, MDPI, vol. 17(12), pages 1-34, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2819-:d:1411212
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/12/2819/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/12/2819/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Corgnati, Stefano Paolo & Fabrizio, Enrico & Filippi, Marco & Monetti, Valentina, 2013. "Reference buildings for cost optimal analysis: Method of definition and application," Applied Energy, Elsevier, vol. 102(C), pages 983-993.
    2. Dimitrios Tziritas & George M. Stavrakakis & Dimitris Bakirtzis & George Kaplanis & Konstantinos Patlitzianas & Markos Damasiotis & Panagiotis L. Zervas, 2023. "Techno-Economic Analysis of a Hydrogen-Based Power Supply Backup System for Tertiary Sector Buildings: A Case Study in Greece," Sustainability, MDPI, vol. 15(9), pages 1-23, May.
    3. Emmanuel N. Efthymiou & Sofia Yfanti & George Kyriakarakos & Panagiotis L. Zervas & Panagiotis Langouranis & Konstantinos Terzis & George M. Stavrakakis, 2022. "A Practical Methodology for Building a Municipality-Led Renewable Energy Community: A Photovoltaics-Based Case Study for the Municipality of Hersonissos in Crete, Greece," Sustainability, MDPI, vol. 14(19), pages 1-31, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Constantinos A. Balaras & Andreas I. Theodoropoulos & Elena G. Dascalaki, 2023. "Geographic Information Systems for Facilitating Audits of the Urban Built Environment," Energies, MDPI, vol. 16(11), pages 1-26, May.
    2. Brandão de Vasconcelos, Ana & Pinheiro, Manuel Duarte & Manso, Armando & Cabaço, António, 2015. "A Portuguese approach to define reference buildings for cost-optimal methodologies," Applied Energy, Elsevier, vol. 140(C), pages 316-328.
    3. Bienvenido-Huertas, David & Moyano, Juan & Rodríguez-Jiménez, Carlos E. & Marín, David, 2019. "Applying an artificial neural network to assess thermal transmittance in walls by means of the thermometric method," Applied Energy, Elsevier, vol. 233, pages 1-14.
    4. Aste, Niccolò & Adhikari, R.S. & Manfren, Massimiliano, 2013. "Cost optimal analysis of heat pump technology adoption in residential reference buildings," Renewable Energy, Elsevier, vol. 60(C), pages 615-624.
    5. Walsh, Angélica & Cóstola, Daniel & Labaki, Lucila Chebel, 2018. "Performance-based validation of climatic zoning for building energy efficiency applications," Applied Energy, Elsevier, vol. 212(C), pages 416-427.
    6. Attia, Shady & Shadmanfar, Niloufar & Ricci, Federico, 2020. "Developing two benchmark models for nearly zero energy schools," Applied Energy, Elsevier, vol. 263(C).
    7. De Masi, Rosa Francesca & Festa, Valentino & Penchini, Daniele & Ruggiero, Silvia & Tariello, Francesco & Vanoli, Giuseppe Peter & Zinno, Alberto, 2024. "State of art of hydrogen utilization for building sector and set-up with preliminary experimental results of 1 kWel solid oxide fuel cell installed in a nearly zero energy house," Energy, Elsevier, vol. 302(C).
    8. Roberto Bruno & Piero Bevilacqua & Cristina Carpino & Natale Arcuri, 2020. "The Cost-Optimal Analysis of a Multistory Building in the Mediterranean Area: Financial and Macroeconomic Projections," Energies, MDPI, vol. 13(5), pages 1-19, March.
    9. Aste, Niccolò & Leonforte, Fabrizio & Manfren, Massimiliano & Mazzon, Manlio, 2015. "Thermal inertia and energy efficiency – Parametric simulation assessment on a calibrated case study," Applied Energy, Elsevier, vol. 145(C), pages 111-123.
    10. Delmastro, Chiara & Mutani, Guglielmina & Corgnati, Stefano Paolo, 2016. "A supporting method for selecting cost-optimal energy retrofit policies for residential buildings at the urban scale," Energy Policy, Elsevier, vol. 99(C), pages 42-56.
    11. Zakula, Tea & Bagaric, Marina & Ferdelji, Nenad & Milovanovic, Bojan & Mudrinic, Sasa & Ritosa, Katia, 2019. "Comparison of dynamic simulations and the ISO 52016 standard for the assessment of building energy performance," Applied Energy, Elsevier, vol. 254(C).
    12. Buso, Tiziana & Corgnati, Stefano Paolo, 2017. "A customized modelling approach for multi-functional buildings – Application to an Italian Reference Hotel," Applied Energy, Elsevier, vol. 190(C), pages 1302-1315.
    13. Ganiç, Neşe & Yılmaz, A. Zerrin, 2014. "Adaptation of the cost optimal level calculation method of Directive 2010/31/EU considering the influence of Turkish national factors," Applied Energy, Elsevier, vol. 123(C), pages 94-107.
    14. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2016. "Multi-stage and multi-objective optimization for energy retrofitting a developed hospital reference building: A new approach to assess cost-optimality," Applied Energy, Elsevier, vol. 174(C), pages 37-68.
    15. Dimitris Al. Katsaprakakis & Nikos Papadakis & Efi Giannopoulou & Yiannis Yiannakoudakis & George Zidianakis & George Katzagiannakis & Eirini Dakanali & George M. Stavrakakis & Avraam Kartalidis, 2023. "Rational Use of Energy in Sport Centers to Achieving Net Zero—The SAVE Project (Part B: Indoor Sports Hall)," Energies, MDPI, vol. 16(21), pages 1-42, October.
    16. de Rubeis, Tullio & Nardi, Iole & Ambrosini, Dario & Paoletti, Domenica, 2018. "Is a self-sufficient building energy efficient? Lesson learned from a case study in Mediterranean climate," Applied Energy, Elsevier, vol. 218(C), pages 131-145.
    17. Nikolaos Papadakis & Dimitrios Al. Katsaprakakis, 2023. "A Review of Energy Efficiency Interventions in Public Buildings," Energies, MDPI, vol. 16(17), pages 1-34, August.
    18. Davor Končalović & Jelena Nikolic & Vladimir Vukasinovic & Dušan Gordić & Dubravka Živković, 2022. "Possibilities for Deep Renovation in Multi-Apartment Buildings in Different Economic Conditions in Europe," Energies, MDPI, vol. 15(8), pages 1-15, April.
    19. Luisa Ingaramo & Stefania Sabatino & Antonio Talarico, 2013. "Economic Sustainability in Social Housing Interventions: The Impact of Operating Variables on Housing Costs of Temporary Dwelling," ERES eres2013_158, European Real Estate Society (ERES).
    20. Massimiliano Manfren & Maurizio Sibilla & Lamberto Tronchin, 2021. "Energy Modelling and Analytics in the Built Environment—A Review of Their Role for Energy Transitions in the Construction Sector," Energies, MDPI, vol. 14(3), pages 1-29, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2819-:d:1411212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.