IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2732-d1408328.html
   My bibliography  Save this article

Investigation of Hydrothermal Carbonization of Exhausted Chestnut from Tannin Extraction: Impact of Process Water Recirculation for Sustainable Fuel Production

Author

Listed:
  • Alessandro Cardarelli

    (Department of Economics Engineering Society and Business Organization (DEIM), University of Tuscia, Largo dell’Università s.n.c., Loc. Riello, 01100 Viterbo, Italy)

  • Cristian Cordelli

    (Department of Economics Engineering Society and Business Organization (DEIM), University of Tuscia, Largo dell’Università s.n.c., Loc. Riello, 01100 Viterbo, Italy)

  • Manuela Romagnoli

    (Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy)

  • Francesco Pizzo

    (Department of Economics Engineering Society and Business Organization (DEIM), University of Tuscia, Largo dell’Università s.n.c., Loc. Riello, 01100 Viterbo, Italy)

  • Marco Barbanera

    (Department of Economics Engineering Society and Business Organization (DEIM), University of Tuscia, Largo dell’Università s.n.c., Loc. Riello, 01100 Viterbo, Italy)

Abstract

This study explores the hydrothermal carbonization (HTC) process applied to the exhausted chestnut produced by the tannin extraction industry, utilizing process water recirculation to enhance the efficiency and sustainability of the conversion process. Tannin extraction from wood typically involves hot water treatment, leaving behind residual wood biomass known as exhausted wood. These by-products maintain their renewable properties because they have only been exposed to hot water under a high pressure, which is unlikely to cause major alterations in their structural components. Hydrothermal treatment was carried out at temperatures of 220 °C and 270 °C for 1 h, with process water being recirculated four times. This investigation focused on analyzing the effects of recirculation on the yield and fuel properties of hydrochar, as well as characterizing the combustion behavior of the obtained hydrochar. The results indicated that recirculation of process water led to improvements in both the mass and energy yields of hydrochar. The mass yield of the hydrochar samples increased by 5–6%, and the ERE of the hydrochar samples increased by 5–8% compared to the HTC reference sample. However, alterations in the combustion characteristics were observed, including decreases in ignition temperature and combustion reactivity. The results indicate that, with PW recirculations, the combustion index decreased by about 14% and 18% for 220 °C and 270 °C, respectively. Overall, this research demonstrates the potential of utilizing HTC on chestnut tannin residue with process water recirculation to produce stable solid fuel and provides insights into the combustion behavior of the resulting hydrochar.

Suggested Citation

  • Alessandro Cardarelli & Cristian Cordelli & Manuela Romagnoli & Francesco Pizzo & Marco Barbanera, 2024. "Investigation of Hydrothermal Carbonization of Exhausted Chestnut from Tannin Extraction: Impact of Process Water Recirculation for Sustainable Fuel Production," Energies, MDPI, vol. 17(11), pages 1-15, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2732-:d:1408328
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2732/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2732/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antonio Picone & Maurizio Volpe & Antonio Messineo, 2021. "Process Water Recirculation during Hydrothermal Carbonization of Waste Biomass: Current Knowledge and Challenges," Energies, MDPI, vol. 14(10), pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Halina Pawlak-Kruczek & Agnieszka Urbanowska & Lukasz Niedzwiecki & Michał Czerep & Marcin Baranowski & Christian Aragon-Briceño & Małgorzata Kabsch-Korbutowicz & Amit Arora & Przemysław Seruga & Mate, 2023. "Hydrothermal Carbonisation as Treatment for Effective Moisture Removal from Digestate—Mechanical Dewatering, Flashing-Off, and Condensates’ Processing," Energies, MDPI, vol. 16(13), pages 1-9, July.
    2. Sun-Ju Lee & Min-Ah Oh & Seung-Jin Oh & Na-Hyeon Cho & Young-Yeul Kang & Jai-Young Lee, 2022. "Effects of Bioliquid Recirculation on Hydrothermal Carbonization of Lignocellulosic Biomass," Energies, MDPI, vol. 15(13), pages 1-10, July.
    3. Krystian Krochmalny & Halina Pawlak-Kruczek & Norbert Skoczylas & Mateusz Kudasik & Aleksandra Gajda & Renata Gnatowska & Monika Serafin-Tkaczuk & Tomasz Czapka & Amit K. Jaiswal & Vishwajeet & Amit A, 2022. "Use of Hydrothermal Carbonization and Cold Atmospheric Plasma for Surface Modification of Brewer’s Spent Grain and Activated Carbon," Energies, MDPI, vol. 15(12), pages 1-11, June.
    4. Agnieszka Urbanowska & Małgorzata Kabsch-Korbutowicz & Christian Aragon-Briceño & Mateusz Wnukowski & Artur Pożarlik & Lukasz Niedzwiecki & Marcin Baranowski & Michał Czerep & Przemysław Seruga & Hali, 2021. "Cascade Membrane System for Separation of Water and Organics from Liquid By-Products of HTC of the Agricultural Digestate—Evaluation of Performance," Energies, MDPI, vol. 14(16), pages 1-18, August.
    5. Florentios Economou & Irene Voukkali & Iliana Papamichael & Valentina Phinikettou & Pantelitsa Loizia & Vincenzo Naddeo & Paolo Sospiro & Marco Ciro Liscio & Christos Zoumides & Diana Mihaela Țîrcă & , 2024. "Turning Food Loss and Food Waste into Watts: A Review of Food Waste as an Energy Source," Energies, MDPI, vol. 17(13), pages 1-30, June.
    6. Michela Lucian & Fabio Merzari & Michele Gubert & Antonio Messineo & Maurizio Volpe, 2021. "Industrial-Scale Hydrothermal Carbonization of Agro-Industrial Digested Sludge: Filterability Enhancement and Phosphorus Recovery," Sustainability, MDPI, vol. 13(16), pages 1-15, August.
    7. Urbanowska, Agnieszka & Niedzwiecki, Lukasz & Wnukowski, Mateusz & Aragon-Briceño, Christian & Kabsch-Korbutowicz, Małgorzata & Baranowski, Marcin & Czerep, Michał & Seruga, Przemysław & Pawlak-Krucze, 2023. "Recovery of chemical energy from retentates from cascade membrane filtration of hydrothermal carbonisation effluent," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2732-:d:1408328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.