IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2590-d1403166.html
   My bibliography  Save this article

Evaluation of Efficiency Enhancement in Photovoltaic Panels via Integrated Thermoelectric Cooling and Power Generation

Author

Listed:
  • Muhammad Faheem

    (Department of Electrical Engineering, National University of Technology, Islamabad 44000, Pakistan)

  • Muhammad Abu Bakr

    (Department of Electrical Engineering, National University of Technology, Islamabad 44000, Pakistan)

  • Muntazir Ali

    (Department of Electrical Engineering, National University of Technology, Islamabad 44000, Pakistan)

  • Muhammad Awais Majeed

    (Department of Electrical Engineering, National University of Technology, Islamabad 44000, Pakistan)

  • Zunaib Maqsood Haider

    (Department of Electrical Engineering, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan)

  • Muhammad Omer Khan

    (Department of Electrical Engineering & Technology, Riphah International University, Faisalabad 38000, Pakistan)

Abstract

Among renewable resources, solar energy is abundant and cost effective. However, the efficiency and performance of photovoltaic panels (PVs) are adversely affected by the rise in the surface temperature of solar cells. This paper analyzes the idea of utilizing thermoelectric modules (TEMs) to enhance the efficiency and performance of PV panels. The proposed hybrid solar thermoelectric generation (HSTEG) system employs TEMs as thermoelectric coolers (TECs) to enhance panel efficiency and as thermoelectric generators (TEGs) to convert excess heat into additional electricity. This study includes an extensive evaluation of the proposed idea using MATLAB Simulink and experimental validation in indoor as well as outdoor environments. The use of TECs for the active cooling of the PV system leads to an increase in its efficiency by 9.54%. Similarly, the passive cooling by TECs along with the additional power generated by the TEGs from the excessive heat led to an increase in the efficiency of the PV system of 15.50%. The results demonstrate the HSTEG system’s potential to significantly improve PV panel efficiency and energy generation, offering a promising avenue for advancing solar energy technology.

Suggested Citation

  • Muhammad Faheem & Muhammad Abu Bakr & Muntazir Ali & Muhammad Awais Majeed & Zunaib Maqsood Haider & Muhammad Omer Khan, 2024. "Evaluation of Efficiency Enhancement in Photovoltaic Panels via Integrated Thermoelectric Cooling and Power Generation," Energies, MDPI, vol. 17(11), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2590-:d:1403166
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2590/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2590/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huang, Shouyuan & Xu, Xianfan, 2017. "A regenerative concept for thermoelectric power generation," Applied Energy, Elsevier, vol. 185(P1), pages 119-125.
    2. Bagus Radiant Utomo & Amin Sulistyanto & Tri Widodo Besar Riyadi & Agung Tri Wijayanta, 2023. "Enhanced Performance of Combined Photovoltaic–Thermoelectric Generator and Heat Sink Panels with a Dual-Axis Tracking System," Energies, MDPI, vol. 16(6), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nie, Wenjie & Lü, Ke & Chen, Aixi & He, Jizhou & Lan, Yueheng, 2018. "Performance optimization of single and two-stage micro/nano-scaled heat pumps with internal and external irreversibilities," Applied Energy, Elsevier, vol. 232(C), pages 695-703.
    2. Chun-I Wu & Kung-Wen Du & Yu-Hsuan Tu, 2024. "Enhanced Energy Harvesting from Thermoelectric Modules: Strategic Manipulation of Element Quantity and Geometry for Optimized Power Output," Energies, MDPI, vol. 17(21), pages 1-17, October.
    3. Li, Bo & Huang, Kuo & Yan, Yuying & Li, Yong & Twaha, Ssennoga & Zhu, Jie, 2017. "Heat transfer enhancement of a modularised thermoelectric power generator for passenger vehicles," Applied Energy, Elsevier, vol. 205(C), pages 868-879.
    4. Zhao, Yulong & Wang, Shixue & Ge, Minghui & Liang, Zhaojun & Liang, Yifan & Li, Yanzhe, 2019. "Performance investigation of an intermediate fluid thermoelectric generator for automobile exhaust waste heat recovery," Applied Energy, Elsevier, vol. 239(C), pages 425-433.
    5. Yang, Wenlong & Zhu, WenChao & Li, Yang & Zhang, Leiqi & Zhao, Bo & Xie, Changjun & Yan, Yonggao & Huang, Liang, 2022. "Annular thermoelectric generator performance optimization analysis based on concentric annular heat exchanger," Energy, Elsevier, vol. 239(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2590-:d:1403166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.