IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2578-d1402435.html
   My bibliography  Save this article

Trends in Hybrid Renewable Energy System (HRES) Applications: A Review

Author

Listed:
  • Daniel Alejandro Pérez Uc

    (Tecnológico Nacional de México, Campus Centla (ITSCe), Frontera 86751, Mexico
    Tecnológico Nacional de México, Campus Centro Nacional de Investigación y Desarrollo Tecnológico (Cenidet), Cuernavaca 62490, Mexico)

  • Susana Estefany de León Aldaco

    (Tecnológico Nacional de México, Campus Centro Nacional de Investigación y Desarrollo Tecnológico (Cenidet), Cuernavaca 62490, Mexico)

  • Jesús Aguayo Alquicira

    (Tecnológico Nacional de México, Campus Centro Nacional de Investigación y Desarrollo Tecnológico (Cenidet), Cuernavaca 62490, Mexico)

Abstract

Microgrids and hybrid renewable energy systems play a crucial role in today’s energy transition. They enable local power generation and distribution, reducing dependence on large centralized infrastructures, can operate independently or connected to a grid, and can provide backup power, thus increasing system resilience. In addition, they combine multiple renewable energy sources, such as solar, wind, hydro, and biomass, to maximize the efficiency and reliability of the supply, and are also adaptable to location-specific conditions, taking advantage of locally available energy resources and reducing the need for energy imports. Moreover, they contribute to decarbonization goals by offering a cleaner and more sustainable alternative. In this article, a documentary review is presented on the interaction of Homer Pro software 3.16.2 (July 2023), used for the design of hybrid renewable energy systems (HRES), with other methods of optimization or sizing. Allusion is made to the type of architecture in the most prominent clean and fossil source configurations, the levelized cost, net annual cost, and maintenance and capital investment cost. A comparison is made among the works reported in the last five years regarding the use of this software tool, based on load demand, geographical area, renewable energy sources, fossil sources, and objective functions, applied to the educational, rural, and industrial sectors. It is shown that India is one of the countries that has reported the most number of HRES techno-economic environmental analysis works, and that the case studies have focused approximately 47% on rural areas, 20% on educational agencies, 14% on commerce and industry, and 29% on urban buildings.

Suggested Citation

  • Daniel Alejandro Pérez Uc & Susana Estefany de León Aldaco & Jesús Aguayo Alquicira, 2024. "Trends in Hybrid Renewable Energy System (HRES) Applications: A Review," Energies, MDPI, vol. 17(11), pages 1-34, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2578-:d:1402435
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2578/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2578/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Md. Rasel Ahmed & Md. Rokib Hasan & Suharto Al Hasan & Muhammad Aziz & Md. Emdadul Hoque, 2023. "Feasibility Study of the Grid-Connected Hybrid Energy System for Supplying Electricity to Support the Health and Education Sector in the Metropolitan Area," Energies, MDPI, vol. 16(4), pages 1-23, February.
    2. Ali M. Jasim & Basil H. Jasim & Florin-Constantin Baiceanu & Bogdan-Constantin Neagu, 2023. "Optimized Sizing of Energy Management System for Off-Grid Hybrid Solar/Wind/Battery/Biogasifier/Diesel Microgrid System," Mathematics, MDPI, vol. 11(5), pages 1-34, March.
    3. Fadhil Khadoum Alhousni & Firas Basim Ismail Alnaimi & Paul C. Okonkwo & Ikram Ben Belgacem & Hassan Mohamed & El Manaa Barhoumi, 2023. "Photovoltaic Power Prediction Using Analytical Models and Homer-Pro: Investigation of Results Reliability," Sustainability, MDPI, vol. 15(11), pages 1-13, May.
    4. Takele Ferede Agajie & Ahmed Ali & Armand Fopah-Lele & Isaac Amoussou & Baseem Khan & Carmen Lilí Rodríguez Velasco & Emmanuel Tanyi, 2023. "A Comprehensive Review on Techno-Economic Analysis and Optimal Sizing of Hybrid Renewable Energy Sources with Energy Storage Systems," Energies, MDPI, vol. 16(2), pages 1-26, January.
    5. Ribó-Pérez, David & Herraiz-Cañete, Ángela & Alfonso-Solar, David & Vargas-Salgado, Carlos & Gómez-Navarro, Tomás, 2021. "Modelling biomass gasifiers in hybrid renewable energy microgrids; a complete procedure for enabling gasifiers simulation in HOMER," Renewable Energy, Elsevier, vol. 174(C), pages 501-512.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Younessi, Hiva Seyed & Bahramara, Salah & Adabi, Farid & Golpîra, Hêmin, 2023. "Modeling the optimal sizing problem of the biogas-based electrical generator in a livestock farm considering a gas storage tank and the anaerobic digester process under the uncertainty of cow dung," Energy, Elsevier, vol. 270(C).
    2. Pei Juan Yew & Deepak Chaulagain & Noel Ngando Same & Jaebum Park & Jeong-Ok Lim & Jeung-Soo Huh, 2024. "Optimal Hybrid Renewable Energy System to Accelerate a Sustainable Energy Transition in Johor, Malaysia," Sustainability, MDPI, vol. 16(17), pages 1-24, September.
    3. Dhammawit Paisiripas & Kang-wook Cho & Soo-jin Park, 2024. "Integration of Small Modular Reactors with Renewable Energy for Carbon Neutrality: A Case Study of Phuket, Thailand," Energies, MDPI, vol. 17(22), pages 1-18, November.
    4. Giovanni Brumana & Elisa Ghirardi & Giuseppe Franchini, 2024. "Comparison of Different Power Generation Mixes for High Penetration of Renewables," Sustainability, MDPI, vol. 16(19), pages 1-16, September.
    5. Larbi Chrifi-Alaoui & Saïd Drid & Mohammed Ouriagli & Driss Mehdi, 2023. "Overview of Photovoltaic and Wind Electrical Power Hybrid Systems," Energies, MDPI, vol. 16(12), pages 1-35, June.
    6. Sangjib Kwon & Hyungbae Gil & Seoin Baek & Heetae Kim, 2022. "Optimal Solution for a Renewable-Energy-Generation System at a Private Educational Institute in South Korea," Energies, MDPI, vol. 15(24), pages 1-11, December.
    7. Takele Ferede Agajie & Armand Fopah-Lele & Isaac Amoussou & Ahmed Ali & Baseem Khan & Om Prakash Mahela & Ramakrishna S. S. Nuvvula & Divine Khan Ngwashi & Emmanuel Soriano Flores & Emmanuel Tanyi, 2023. "Techno-Economic Analysis and Optimization of Hybrid Renewable Energy System with Energy Storage under Two Operational Modes," Sustainability, MDPI, vol. 15(15), pages 1-31, July.
    8. Adoum Abdoulaye, Mahamat & Waita, Sebastian & Wabuge Wekesa, Cyrus & Mwabora, Julius Mwakondo, 2024. "Optimal sizing of an off-grid and grid-connected hybrid photovoltaic-wind system with battery and fuel cell storage system: A techno-economic, environmental, and social assessment," Applied Energy, Elsevier, vol. 365(C).
    9. Roy, Dibyendu & Zhu, Shunmin & Wang, Ruiqi & Mondal, Pradip & Ling-Chin, Janie & Roskilly, Anthony Paul, 2024. "Techno-economic and environmental analyses of hybrid renewable energy systems for a remote location employing machine learning models," Applied Energy, Elsevier, vol. 361(C).
    10. P. S. Praveena Krishna & Jayalakshmi N. Sabhahit & Vidya S. Rao & Amit Saraswat & Hannah Chaplin Laugaland & Pramod Bhat Nempu, 2024. "Optimizing EV Powertrain Performance and Sustainability through Constraint Prioritization in Nonlinear Model Predictive Control of Semi-Active Bidirectional DC-DC Converter with HESS," Sustainability, MDPI, vol. 16(18), pages 1-21, September.
    11. Georgios Yiasoumas & Lazar Berbakov & Valentina Janev & Alessandro Asmundo & Eneko Olabarrieta & Andrea Vinci & Giovanni Baglietto & George E. Georghiou, 2023. "Key Aspects and Challenges in the Implementation of Energy Communities," Energies, MDPI, vol. 16(12), pages 1-24, June.
    12. Johannes Prior & Tobias Drees & Michael Miro & Bernd Kuhlenkötter, 2024. "Systematic Literature Review of Heuristic-Optimized Microgrids and Energy-Flexible Factories," Clean Technol., MDPI, vol. 6(3), pages 1-28, August.
    13. Katarzyna Piwowar-Sulej & Mariusz Sołtysik & Szymon Jarosz & Ryszard Pukała, 2023. "The Linkage between Renewable Energy and Project Management: What Do We Already Know, and What Are the Future Directions of Research?," Energies, MDPI, vol. 16(12), pages 1-26, June.
    14. Francesco Calise & Francesco Liberato Cappiello & Luca Cimmino & Massimo Dentice d’Accadia & Maria Vicidomini, 2021. "A Review of the State of the Art of Biomethane Production: Recent Advancements and Integration of Renewable Energies," Energies, MDPI, vol. 14(16), pages 1-43, August.
    15. Ran, Peng & Ou, YiFan & Zhang, ChunYu & Chen, YuTong, 2024. "Energy, exergy, economic, and life cycle environmental analysis of a novel biogas-fueled solid oxide fuel cell hybrid power generation system assisted with solar thermal energy storage unit," Applied Energy, Elsevier, vol. 358(C).
    16. Imen Jarraya & Fatma Abdelhedi & Nassim Rizoug, 2023. "An Innovative Power Management Strategy for Hybrid Battery–Supercapacitor Systems in Electric Vehicle," Mathematics, MDPI, vol. 12(1), pages 1-23, December.
    17. José Luis Muñoz-Pincheira & Lautaro Salazar & Felipe Sanhueza & Armin Lüer-Villagra, 2024. "Temporal Complementarity Analysis of Wind and Solar Power Potential for Distributed Hybrid Electric Generation in Chile," Energies, MDPI, vol. 17(8), pages 1-23, April.
    18. Thirunavukkarasu, M. & Lala, Himadri & Sawle, Yashwant, 2023. "Techno-economic-environmental analysis of off-grid hybrid energy systems using honey badger optimizer," Renewable Energy, Elsevier, vol. 218(C).
    19. Jincan Zeng & Xiaoyu Liu & Minwei Liu & Xi Liu & Guori Huang & Shangheng Yao & Gengsheng He & Nan Shang & Fuqiang Guo & Peng Wang, 2024. "Techno-Economic Analysis of Hydrogen as a Storage Solution in an Integrated Energy System for an Industrial Area in China," Energies, MDPI, vol. 17(13), pages 1-20, June.
    20. Altin, Cemil, 2024. "Investigation of the effects of synthetic wind speed parameters and wind speed distribution on system size and cost in hybrid renewable energy system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2578-:d:1402435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.