IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2474-d1399300.html
   My bibliography  Save this article

Municipal Sewage Sludge as a Resource in the Circular Economy

Author

Listed:
  • Mariusz Z. Gusiatin

    (Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-709 Olsztyn, Poland)

  • Dorota Kulikowska

    (Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-709 Olsztyn, Poland)

  • Katarzyna Bernat

    (Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-709 Olsztyn, Poland)

Abstract

Municipal sewage sludge (MSS) is an inevitable byproduct of wastewater treatment, with increasing amounts year by year worldwide. The development of environmentally and economically acceptable methods for the sustainable management of MSS is a major environmental challenge. Nowadays, sludge management practices, besides the commonly used stabilization methods, focus attention on alternative sludge-disposal pathways, which encompass enhanced energy and valuable-resource recovery. This review presents the recent advances in the recovery of selected value-added products from sludge. Because of the high nitrogen and phosphorus concentrations, waste MSS can be a nutrient source (e.g., struvite). This paper discusses the conditions of and advances in the technology of struvite recovery. As in the extracellular polymeric substances (EPSs) of biological sludge, alginate-like exopolymers (ALEs) are present in MSS systems that treat municipal wastewater. The yields, dynamics in content, and characterization of ALEs and their possible applications were analyzed. MSS is an important source of humic substances. Their occurrence, characterization, and yields in various types of MSS (e.g., untreated, composted, and digested sludge) and main methods of application are presented. The important aspects and trends of MSS pyrolysis, including the thermochemical conversion to biochar, are discussed in this review. The characterization of biochar derived from MSS and the assessment of the environmental risks are also covered. This paper explores the potential use of biochar derived from MSS in various applications, including soil amendment, carbon sequestration, and environmental remediation.

Suggested Citation

  • Mariusz Z. Gusiatin & Dorota Kulikowska & Katarzyna Bernat, 2024. "Municipal Sewage Sludge as a Resource in the Circular Economy," Energies, MDPI, vol. 17(11), pages 1-25, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2474-:d:1399300
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2474/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2474/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dawson, C.J. & Hilton, J., 2011. "Fertiliser availability in a resource-limited world: Production and recycling of nitrogen and phosphorus," Food Policy, Elsevier, vol. 36(Supplemen), pages 14-22, January.
    2. Dawson, C.J. & Hilton, J., 2011. "Fertiliser availability in a resource-limited world: Production and recycling of nitrogen and phosphorus," Food Policy, Elsevier, vol. 36(S1), pages 14-22.
    3. João Cesar Cadima Antunes & Teresa Eugénio & Manuel Castelo Branco, 2022. "Circular Economy for Cities and Sustainable Development: The Case of the Portuguese City of Leiria," Sustainability, MDPI, vol. 14(3), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    2. Meyer-Aurich, Andreas & Karatay, Yusuf Nadi, 2019. "Effects of uncertainty and farmers' risk aversion on optimal N fertilizer supply in wheat production in Germany," Agricultural Systems, Elsevier, vol. 173(C), pages 130-139.
    3. Michael Barrowclough & L. Geyer, 2015. "Biofuel Policies: The Underground Limitation on Biofuels," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 21(1), pages 55-65, March.
    4. Dmitrieva, D. & Ilinova, A. & Kraslawski, A., 2017. "Strategic management of the potash industry in Russia," Resources Policy, Elsevier, vol. 52(C), pages 81-89.
    5. Peter Horton & Steve A. Banwart & Dan Brockington & Garrett W. Brown & Richard Bruce & Duncan Cameron & Michelle Holdsworth & S. C. Lenny Koh & Jurriaan Ton & Peter Jackson, 2017. "An agenda for integrated system-wide interdisciplinary agri-food research," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(2), pages 195-210, April.
    6. Hans-Peter Weikard, 2016. "Phosphorus recycling and food security in the long run: a conceptual modelling approach," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(2), pages 405-414, April.
    7. Reijnders, L., 2014. "Phosphorus resources, their depletion and conservation, a review," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 32-49.
    8. Paul J. A. Withers & Colin Neal & Helen P. Jarvie & Donnacha G. Doody, 2014. "Agriculture and Eutrophication: Where Do We Go from Here?," Sustainability, MDPI, vol. 6(9), pages 1-23, September.
    9. Ami Reznik & Ariel Dinar, 2022. "Local conditions and the economic feasibility of urban wastewater recycling in irrigated agriculture: Lessons from a stochastic regional analysis in California," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(4), pages 2115-2130, December.
    10. Shuangxi Li & Zhaohui Zhang & Juanqin Zhang & Xianqing Zheng & Hanlin Zhang & Haiyun Zhang & Yue Zhang & Naling Bai & Weiguang Lv, 2022. "Using Mathematical Models to Study the Influences of Different Ratios of Chemical Nitrogen, Phosphorus, and Potassium on the Content of Soluble Protein, Vitamin C, and Soluble Sugar in Melon," IJERPH, MDPI, vol. 20(1), pages 1-15, December.
    11. Olagunju, Kehinde Oluseyi & Feng, Siyi & Patton, Myles, 2021. "Dynamic relationships among phosphate rock, fertilisers and agricultural commodity markets: Evidence from a vector error correction model and Directed Acyclic Graphs," Resources Policy, Elsevier, vol. 74(C).
    12. Chowdhury, Rubel Biswas & Moore, Graham A. & Weatherley, Anthony J. & Arora, Meenakshi, 2014. "A review of recent substance flow analyses of phosphorus to identify priority management areas at different geographical scales," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 213-228.
    13. Aleksandra Dimitrijević & Marija Gavrilović & Sanjin Ivanović & Zoran Mileusnić & Rajko Miodragović & Saša Todorović, 2020. "Energy Use and Economic Analysis of Fertilizer Use in Wheat and Sugar Beet Production in Serbia," Energies, MDPI, vol. 13(9), pages 1-12, May.
    14. Wassenaar, T. & Doelsch, E. & Feder, F. & Guerrin, F. & Paillat, J.-M. & Thuriès, L. & Saint Macary, H., 2014. "Returning Organic Residues to Agricultural Land (RORAL) – Fuelling the Follow-the-Technology approach," Agricultural Systems, Elsevier, vol. 124(C), pages 60-69.
    15. Johannes Dahlin & Verena Halbherr & Peter Kurz & Michael Nelles & Carsten Herbes, 2016. "Marketing Green Fertilizers: Insights into Consumer Preferences," Sustainability, MDPI, vol. 8(11), pages 1-15, November.
    16. Boldrin, Alessio & Baral, Khagendra Raj & Fitamo, Temesgen & Vazifehkhoran, Ali Heidarzadeh & Jensen, Ida Græsted & Kjærgaard, Ida & Lyng, Kari-Anne & van Nguyen, Quan & Nielsen, Lise Skovsgaard & Tri, 2016. "Optimised biogas production from the co-digestion of sugar beet with pig slurry: Integrating energy, GHG and economic accounting," Energy, Elsevier, vol. 112(C), pages 606-617.
    17. Israel Finkelshtain & Iddo Kan & Mickey Rapaport‐Rom, 2020. "Substitutability of Freshwater and Non‐Freshwater Sources in Irrigation: an Econometric Analysis," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1105-1134, August.
    18. Reznik, Ami & Feinerman, Eli & Finkelshtain, Israel & Fisher, Franklin & Huber-Lee, Annette & Joyce, Brian & Kan, Iddo, 2017. "Economic implications of agricultural reuse of treated wastewater in Israel: A statewide long-term perspective," Ecological Economics, Elsevier, vol. 135(C), pages 222-233.
    19. Ridoutt, Bradley G. & Wang, Enli & Sanguansri, Peerasak & Luo, Zhongkui, 2013. "Life cycle assessment of phosphorus use efficient wheat grown in Australia," Agricultural Systems, Elsevier, vol. 120(C), pages 2-9.
    20. Mathy Sane & Miroslav Hajek & Chukwudi Nwaogu & Ratna Chrismiari Purwestri, 2021. "Subsidy as An Economic Instrument for Environmental Protection: A Case of Global Fertilizer Use," Sustainability, MDPI, vol. 13(16), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2474-:d:1399300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.