IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2473-d1399276.html
   My bibliography  Save this article

Carbon and Energy Trading Integration within a Blockchain-Powered Peer-to-Peer Framework

Author

Listed:
  • Ameni Boumaiza

    (Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Doha P. O. Box 34110, Qatar)

Abstract

In the ever-changing global energy landscape, the emergence of ‘prosumers’, individuals who both produce and consume energy, has blurred traditional boundaries. Driven by the growing demand for sustainability and renewable energy, prosumers play a critical role in bridging the gap between energy production and consumption. They can generate their own energy through decentralized sources like solar panels and wind turbines, and sell excess energy back to the grid. However, tracking carbon emissions and pricing strategies for prosumers pose challenges. To address this, we developed an innovative blockchain-driven peer-to-peer (P2P) trading platform for carbon allowances. This platform empowers prosumers to influence pricing and promotes a more equitable distribution of energy. The P2P platform leverages blockchain technology, a decentralized digital ledger, to provide transparency and security in carbon emission tracking and energy transactions. By eliminating intermediaries, blockchain ensures the accuracy of data and creates a tamper-proof record of energy production and consumption. This study employed a modified IEEE 37-bus test system to evaluate the efficacy of the proposed blockchain-based trading framework. The IEEE 37-bus system is a well-established benchmark for power system analysis, comprising 37 nodes, 13 generators, and 37 transmission lines. By leveraging this test system, this study demonstrated the framework’s ability to optimize energy consumption patterns and mitigate carbon emissions, highlighting the transformative potential of blockchain technology in the energy sector. The proposed P2P trading platform offers several benefits for prosumers: (1) Transparency: The blockchain-based platform provides a transparent record of all energy transactions, ensuring that prosumers are compensated fairly for the energy they produce. (2) Security: Blockchain technology makes it impossible to tamper with or counterfeit carbon allowances, ensuring the integrity of the trading system. (3) Efficiency: The P2P trading platform eliminates the need for intermediaries, reducing the cost and complexity of energy transactions. (4) Empowerment: The platform gives prosumers a greater say in how their energy is priced and distributed, promoting a more equitable energy system.

Suggested Citation

  • Ameni Boumaiza, 2024. "Carbon and Energy Trading Integration within a Blockchain-Powered Peer-to-Peer Framework," Energies, MDPI, vol. 17(11), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2473-:d:1399276
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2473/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2473/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fan, Jin & Li, Jun & Wu, Yanrui & Wang, Shanyong & Zhao, Dingtao, 2016. "The effects of allowance price on energy demand under a personal carbon trading scheme," Applied Energy, Elsevier, vol. 170(C), pages 242-249.
    2. Kavita Surana & Sarah M. Jordaan, 2019. "The climate mitigation opportunity behind global power transmission and distribution," Nature Climate Change, Nature, vol. 9(9), pages 660-665, September.
    3. Drew Shindell & Christopher J. Smith, 2019. "Climate and air-quality benefits of a realistic phase-out of fossil fuels," Nature, Nature, vol. 573(7774), pages 408-411, September.
    4. van Leeuwen, Gijs & AlSkaif, Tarek & Gibescu, Madeleine & van Sark, Wilfried, 2020. "An integrated blockchain-based energy management platform with bilateral trading for microgrid communities," Applied Energy, Elsevier, vol. 263(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hua, Weiqi & Jiang, Jing & Sun, Hongjian & Wu, Jianzhong, 2020. "A blockchain based peer-to-peer trading framework integrating energy and carbon markets," Applied Energy, Elsevier, vol. 279(C).
    2. Jānis Krūmiņš & Māris Kļaviņš, 2023. "Investigating the Potential of Nuclear Energy in Achieving a Carbon-Free Energy Future," Energies, MDPI, vol. 16(9), pages 1-31, April.
    3. Muhammad Waseem & Muhammad Adnan Khan & Arman Goudarzi & Shah Fahad & Intisar Ali Sajjad & Pierluigi Siano, 2023. "Incorporation of Blockchain Technology for Different Smart Grid Applications: Architecture, Prospects, and Challenges," Energies, MDPI, vol. 16(2), pages 1-29, January.
    4. Nakamoto, Yuya & Eguchi, Shogo & Takayabu, Hirotaka, 2024. "Efficiency and benchmarks for photovoltaic power generation amid uncertain conditions," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
    5. Molina-Rodea, R. & Saucedo-Velázquez, J. & Gómez-Franco, W.R. & Wong-Loya, J.A., 2024. "Operational proposal of “U” type earth heat exchanger harnessing a non-producing well for energy supply to an absorption cooling system. Approach with “La Primavera” geothermal field data," Renewable Energy, Elsevier, vol. 227(C).
    6. Zhuoxin Lu & Xiaoyuan Xu & Zheng Yan & Dong Han & Shiwei Xia, 2024. "Mobile Energy-Storage Technology in Power Grid: A Review of Models and Applications," Sustainability, MDPI, vol. 16(16), pages 1-19, August.
    7. Yan Liu & Chao Shang, 2022. "Application of Blockchain Technology in Agricultural Water Rights Trade Management," Sustainability, MDPI, vol. 14(12), pages 1-10, June.
    8. Li, Jiaxuan & Zhu, Xun & Djilali, Ned & Yang, Yang & Ye, Dingding & Chen, Rong & Liao, Qiang, 2022. "Comparative well-to-pump assessment of fueling pathways for zero-carbon transportation in China: Hydrogen economy or methanol economy?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    9. Tsao, Yu-Chung & Thanh, Vo-Van, 2021. "Toward sustainable microgrids with blockchain technology-based peer-to-peer energy trading mechanism: A fuzzy meta-heuristic approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    10. Sara Khan & Uzma Amin & Ahmed Abu-Siada, 2024. "P2P Energy Trading of EVs Using Blockchain Technology in Centralized and Decentralized Networks: A Review," Energies, MDPI, vol. 17(9), pages 1-17, April.
    11. Ruan, Hebin & Gao, Hongjun & Gooi, Hoay Beng & Liu, Junyong, 2022. "Active distribution network operation management integrated with P2P trading," Applied Energy, Elsevier, vol. 323(C).
    12. Shahryar Jafarinejad & Rebecca R. Hernandez & Sajjad Bigham & Bryan S. Beckingham, 2023. "The Intertwined Renewable Energy–Water–Environment (REWE) Nexus Challenges and Opportunities: A Case Study of California," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    13. Michaela Roschger & Sigrid Wolf & Boštjan Genorio & Viktor Hacker, 2022. "Effect of PdNiBi Metal Content: Cost Reduction in Alkaline Direct Ethanol Fuel Cells," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
    14. Nakamoto, Yuya & Eguchi, Shogo, 2024. "How do seasonal and technical factors affect generation efficiency of photovoltaic power plants?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    15. Wanghu Sun & Yuning Sun & Xiaochun Hong & Yuan Zhang & Chen Liu, 2023. "Research on Biomass Waste Utilization Based on Pollution Reduction and Carbon Sequestration," Sustainability, MDPI, vol. 15(5), pages 1-15, March.
    16. Mousa Mohammed Khubrani & Shadab Alam, 2023. "Blockchain-Based Microgrid for Safe and Reliable Power Generation and Distribution: A Case Study of Saudi Arabia," Energies, MDPI, vol. 16(16), pages 1-34, August.
    17. Abdul Salam Khan & Bashir Salah & Dominik Zimon & Muhammad Ikram & Razaullah Khan & Catalin I. Pruncu, 2020. "A Sustainable Distribution Design for Multi-Quality Multiple-Cold-Chain Products: An Integrated Inspection Strategies Approach," Energies, MDPI, vol. 13(24), pages 1-25, December.
    18. Esmat, Ayman & de Vos, Martijn & Ghiassi-Farrokhfal, Yashar & Palensky, Peter & Epema, Dick, 2021. "A novel decentralized platform for peer-to-peer energy trading market with blockchain technology," Applied Energy, Elsevier, vol. 282(PA).
    19. Gourisetti, Sri Nikhil Gupta & Sebastian-Cardenas, D. Jonathan & Bhattarai, Bishnu & Wang, Peng & Widergren, Steve & Borkum, Mark & Randall, Alysha, 2021. "Blockchain smart contract reference framework and program logic architecture for transactive energy systems," Applied Energy, Elsevier, vol. 304(C).
    20. Qingchang Li & Seungkook Roh & Jin Won Lee, 2020. "Segmenting the South Korean Public According to Their Preferred Direction for Electricity Mix Reform," Sustainability, MDPI, vol. 12(21), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2473-:d:1399276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.