IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2471-d1399171.html
   My bibliography  Save this article

Research on Strategies for Air-Source Heat Pump Load Aggregation to Participate in Multi-Scenario Demand Response

Author

Listed:
  • Haiping Liang

    (Department of Electric Power Engineering, North China Electric Power University, Baoding 071003, China)

  • Xin Xie

    (Department of Electric Power Engineering, North China Electric Power University, Baoding 071003, China)

  • Meng Liu

    (Electric Power Research Institute of State Grid Shandong Electric Power Company, Jinan 250003, China)

  • Shengsuo Niu

    (Department of Electric Power Engineering, North China Electric Power University, Baoding 071003, China)

  • Haifeng Su

    (Department of Electric Power Engineering, North China Electric Power University, Baoding 071003, China)

Abstract

Air-source heat pumps (ASHPs), functioning as thermally controlled loads, possess significant adjustable capabilities and controllability when aggregated, establishing them as premium resources for demand-response engagement. This paper proposes a control strategy for the aggregation of ASHP loads to participate in demand response across multiple scenarios, framed within a three-tier architecture: electric power system, Load Aggregator (LA), and thermal load. Load Aggregators, considering the user-comfort temperature ranges and the thermal storage characteristics of buildings, aim to minimize heating costs through time-of-use electricity pricing, while assessing the adjustability of the load. Upon receiving control directives from the power system’s dispatch department, the strategy allocates load adjustments by considering user comfort and system regulatory needs, thereby addressing issues like aggregated power oscillations and significant rebound loads. The effectiveness of the proposed strategy is corroborated through simulation, demonstrating its potential to enhance demand-response participation and ameliorate associated power stability challenges.

Suggested Citation

  • Haiping Liang & Xin Xie & Meng Liu & Shengsuo Niu & Haifeng Su, 2024. "Research on Strategies for Air-Source Heat Pump Load Aggregation to Participate in Multi-Scenario Demand Response," Energies, MDPI, vol. 17(11), pages 1-16, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2471-:d:1399171
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2471/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2471/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Sen & Li, Fengting & Zhang, Gaohang & Yin, Chunya, 2023. "Analysis of energy storage demand for peak shaving and frequency regulation of power systems with high penetration of renewable energy," Energy, Elsevier, vol. 267(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Hou & Yao, Ling & Lu, Ning & Qin, Jun & Zhang, Xiaotong & Liu, Tang & Zhang, Xingxing & Zhou, Chenghu, 2024. "Exploring the optimization of rooftop photovoltaic scale and spatial layout under curtailment constraints," Energy, Elsevier, vol. 293(C).
    2. Ziqi Liu & Tingting Su & Zhiying Quan & Quanli Wu & Yu Wang, 2023. "Review on the Optimal Configuration of Distributed Energy Storage," Energies, MDPI, vol. 16(14), pages 1-17, July.
    3. Ma, Tingshan & Li, Zhengkuan & Lv, Kai & Chang, Dongfeng & Hu, Wenshuai & Zou, Ying, 2024. "Design and performance analysis of deep peak shaving scheme for thermal power units based on high-temperature molten salt heat storage system," Energy, Elsevier, vol. 288(C).
    4. Peipei You & Sitao Li & Chengren Li & Chao Zhang & Hailang Zhou & Huicai Wang & Huiru Zhao & Yihang Zhao, 2023. "Price-Based Demand Response: A Three-Stage Monthly Time-of-Use Tariff Optimization Model," Energies, MDPI, vol. 16(23), pages 1-20, November.
    5. Xiong, Yongkang & Zeng, Zhenfeng & Xin, Jianbo & Song, Guanhong & Xia, Yonghong & Xu, Zaide, 2023. "Renewable energy time series regulation strategy considering grid flexible load and N-1 faults," Energy, Elsevier, vol. 284(C).
    6. Chen, Xinjiang & Yang, Yu & Wang, Jianxiao & Song, Jie & He, Guannan, 2023. "Battery valuation and management for battery swapping station," Energy, Elsevier, vol. 279(C).
    7. Yin, Linfei & Lin, Chen, 2024. "Matrix Wasserstein distance generative adversarial network with gradient penalty for fast low-carbon economic dispatch of novel power systems," Energy, Elsevier, vol. 298(C).
    8. Wentao Huang & Qingqing Zheng & Ying Hu & Yalan Huang & Shasha Zhou, 2024. "Optimization of Frequency Modulation Energy Storage Configuration in Power Grid Based on Equivalent Full Cycle Model," Energies, MDPI, vol. 17(9), pages 1-15, April.
    9. Li, Xuehan & Wang, Wei & Ye, Lingling & Ren, Guorui & Fang, Fang & Liu, Jizhen & Chen, Zhe & Zhou, Qiang, 2024. "Improving frequency regulation ability for a wind-thermal power system by multi-objective optimized sliding mode control design," Energy, Elsevier, vol. 300(C).
    10. Zhang, Mingze & Li, Weidong & Yu, Samson Shenglong & Wen, Kerui & Muyeen, S.M., 2023. "Day-ahead optimization dispatch strategy for large-scale battery energy storage considering multiple regulation and prediction failures," Energy, Elsevier, vol. 270(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2471-:d:1399171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.