IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i10p2344-d1393597.html
   My bibliography  Save this article

Tele-Trafficking of Virtual Data Storage Obtained from Smart Grid by Replicated Gluster in Syntose Environment

Author

Listed:
  • Waqas Hashmi

    (Department of Electrical Engineering, Khwaja Fareed University of Engineering & Technology (KFUEIT), Rahim Yar Khan 64200, Pakistan)

  • Shahid Atiq

    (Department of Electrical Engineering, Khwaja Fareed University of Engineering & Technology (KFUEIT), Rahim Yar Khan 64200, Pakistan)

  • Muhammad Majid Hussain

    (School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK)

  • Khurram Javed

    (Department of Electrical Engineering, Institute of Space Technology (IST), Islamabad 44000, Pakistan)

Abstract

One of the most important developments in the energy industry is the evolution of smart grids, which record minute details of voltage levels, energy usage, and other critical electrical variables through General Packet Radio Service (GPRS)-enabled meters. This phenomenon creates an extensive dataset for the optimization of the grid system. However, the minute-by-minute energy details recorded by GPRS meters are challenging to store and manage in physical storage resources (old techniques lead to a memory shortage). This study investigates using the distributed file system, replicated Gluster, as a reliable storage option for handling and protecting the enormous volumes of data produced by smart grid components. This study performs two essential tasks. (1) The storage of virtual data received from GPRS meters and load flow analysis of SynerGee Electric 4.0 software from the smart grid (we have extracted electrical data from 16 outgoing feeders, distributed lines, in this manuscript). (2) Tele-trafficking is performed to check the performance of replicated Gluster (RG) for virtual data (electrical data received from the smart grid) storage in terms of User Datagram Protocol (UDP), Transmission Control Protocol (TCP), data flow, and jitter delays. This storage technique provides more opportuni11ty to analyze and perform smart techniques efficiently for future requirement, analysis, and load estimation in smart grids compared to traditional storage methods.

Suggested Citation

  • Waqas Hashmi & Shahid Atiq & Muhammad Majid Hussain & Khurram Javed, 2024. "Tele-Trafficking of Virtual Data Storage Obtained from Smart Grid by Replicated Gluster in Syntose Environment," Energies, MDPI, vol. 17(10), pages 1-31, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2344-:d:1393597
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/10/2344/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/10/2344/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Bin & Li, Wentao & Chan, Ka Wing & Cao, Yijia & Kuang, Yonghong & Liu, Xi & Wang, Xiong, 2016. "Smart home energy management systems: Concept, configurations, and scheduling strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 30-40.
    2. Zheng, Junjun & Okamura, Hiroyuki & Pang, Taoming & Dohi, Tadashi, 2021. "Availability importance measures of components in smart electric power grid systems," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    3. Jose Ulises Castellanos Contreras & Leonardo Rodríguez Urrego, 2023. "Technological Developments in Control Models Using Petri Nets for Smart Grids: A Review," Energies, MDPI, vol. 16(8), pages 1-21, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    2. Jia, Kunqi & Guo, Ge & Xiao, Jucheng & Zhou, Huan & Wang, Zhihua & He, Guangyu, 2019. "Data compression approach for the home energy management system," Applied Energy, Elsevier, vol. 247(C), pages 643-656.
    3. Chen, Chien-fei & Nelson, Hannah & Xu, Xiaojing & Bonilla, Gregory & Jones, Nicholas, 2021. "Beyond technology adoption: Examining home energy management systems, energy burdens and climate change perceptions during COVID-19 pandemic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Ioanna-M. Chatzigeorgiou & Christos Diou & Kyriakos C. Chatzidimitriou & Georgios T. Andreou, 2021. "Demand Response Alert Service Based on Appliance Modeling," Energies, MDPI, vol. 14(10), pages 1-15, May.
    5. Nizami, M.S.H. & Hossain, M.J. & Amin, B.M. Ruhul & Fernandez, Edstan, 2020. "A residential energy management system with bi-level optimization-based bidding strategy for day-ahead bi-directional electricity trading," Applied Energy, Elsevier, vol. 261(C).
    6. Adnan Ahmad & Asif Khan & Nadeem Javaid & Hafiz Majid Hussain & Wadood Abdul & Ahmad Almogren & Atif Alamri & Iftikhar Azim Niaz, 2017. "An Optimized Home Energy Management System with Integrated Renewable Energy and Storage Resources," Energies, MDPI, vol. 10(4), pages 1-35, April.
    7. Prinsloo, Gerro & Dobson, Robert & Mammoli, Andrea, 2018. "Synthesis of an intelligent rural village microgrid control strategy based on smartgrid multi-agent modelling and transactive energy management principles," Energy, Elsevier, vol. 147(C), pages 263-278.
    8. Zhao, Lin-Chuan & Zhou, Teng & Chang, Si-Deng & Zou, Hong-Xiang & Gao, Qiu-Hua & Wu, Zhi-Yuan & Yan, Ge & Wei, Ke-Xiang & Yeatman, Eric M. & Meng, Guang & Zhang, Wen-Ming, 2024. "A disposable cup inspired smart floor for trajectory recognition and human-interactive sensing," Applied Energy, Elsevier, vol. 357(C).
    9. Zhou, Siwei & Li, Zhao & Xiang, Jianwen, 2025. "Reliability analysis of dynamic fault trees with Priority-AND gates using conditional binary decision diagrams," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    10. Syed Ali Abbas Kazmi & Muhammad Khuram Shahzad & Akif Zia Khan & Dong Ryeol Shin, 2017. "Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective," Energies, MDPI, vol. 10(4), pages 1-47, April.
    11. Zhang, Ying & Deng, Shuai & Ni, Jiaxin & Zhao, Li & Yang, Xingyang & Li, Minxia, 2017. "A literature research on feasible application of mixed working fluid in flexible distributed energy system," Energy, Elsevier, vol. 137(C), pages 377-390.
    12. Zhao, Xueyuan & Gao, Weijun & Qian, Fanyue & Ge, Jian, 2021. "Electricity cost comparison of dynamic pricing model based on load forecasting in home energy management system," Energy, Elsevier, vol. 229(C).
    13. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    14. Correa-Florez, Carlos Adrian & Michiorri, Andrea & Kariniotakis, Georges, 2018. "Robust optimization for day-ahead market participation of smart-home aggregators," Applied Energy, Elsevier, vol. 229(C), pages 433-445.
    15. Firouzi, Mohsen & Samimi, Abouzar & Salami, Abolfazl, 2022. "Reliability evaluation of a composite power system in the presence of renewable generations," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    16. de Wildt, T.E. & Chappin, E.J.L. & van de Kaa, G. & Herder, P.M. & van de Poel, I.R., 2019. "Conflicting values in the smart electricity grid a comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 184-196.
    17. Hosseini, Sayed Saeed & Agbossou, Kodjo & Kelouwani, Sousso & Cardenas, Alben, 2017. "Non-intrusive load monitoring through home energy management systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1266-1274.
    18. Filipe Quintal & Daniel Garigali & Dino Vasconcelos & Jonathan Cavaleiro & Wilson Santos & Lucas Pereira, 2021. "Energy Monitoring in the Wild: Platform Development and Lessons Learned from a Real-World Demonstrator," Energies, MDPI, vol. 14(18), pages 1-15, September.
    19. Mohammad Shakeri & Nowshad Amin & Jagadeesh Pasupuleti & Abolfazl Mehbodniya & Nilofar Asim & Sieh Kiong Tiong & Foo Wah Low & Chong Tak Yaw & Nurul Asma Samsudin & Md Rokonuzzaman & Chong Kok Hen & C, 2020. "An Autonomous Home Energy Management System Using Dynamic Priority Strategy in Conventional Homes," Energies, MDPI, vol. 13(13), pages 1-14, June.
    20. Francesco Mancini & Gianluigi Lo Basso & Livio de Santoli, 2019. "Energy Use in Residential Buildings: Impact of Building Automation Control Systems on Energy Performance and Flexibility," Energies, MDPI, vol. 12(15), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2344-:d:1393597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.