IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i10p2251-d1389969.html
   My bibliography  Save this article

Energy Load Forecasting Techniques in Smart Grids: A Cross-Country Comparative Analysis

Author

Listed:
  • Rachida Hachache

    (Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Ben Guerir 43150, Morocco
    LISAC Laboratory, Sidi Mohammed Ben Abdellah University, Fez 30000, Morocco)

  • Mourad Labrahmi

    (STRS Laboratory, Institut National des Postes et Telecommunications (INPT), Rabat 10112, Morocco)

  • António Grilo

    (INESC-ID Lisboa, IST-Universidade de Lisboa, 1000-100 Lisboa, Portugal)

  • Abdelaali Chaoub

    (STRS Laboratory, Institut National des Postes et Telecommunications (INPT), Rabat 10112, Morocco)

  • Rachid Bennani

    (Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Ben Guerir 43150, Morocco)

  • Ahmed Tamtaoui

    (STRS Laboratory, Institut National des Postes et Telecommunications (INPT), Rabat 10112, Morocco)

  • Brahim Lakssir

    (Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Ben Guerir 43150, Morocco)

Abstract

Energy management systems allow the Smart Grids industry to track, improve, and regulate energy use. Particularly, demand-side management is regarded as a crucial component of the entire Smart Grids system. Therefore, by aligning utility offers with customer demand, anticipating future energy demands is essential for regulating consumption. An updated examination of several forecasting techniques for projecting energy short-term load forecasts is provided in this article. Each class of algorithms, including statistical techniques, Machine Learning, Deep Learning, and hybrid combinations, are comparatively evaluated and critically analyzed, based on three real consumption datasets from Spain, Germany, and the United States of America. To increase the size of tiny training datasets, this paper also proposes a data augmentation technique based on Generative Adversarial Networks. The results show that the Deep Learning-hybrid model is more accurate than traditional statistical methods and basic Machine Learning procedures. In the same direction, it is demonstrated that more comprehensive datasets assisted by complementary data, such as energy generation and weather, may significantly boost the accuracy of the models. Additionally, it is also demonstrated that Generative Adversarial Networks-based data augmentation may greatly improve algorithm accuracy.

Suggested Citation

  • Rachida Hachache & Mourad Labrahmi & António Grilo & Abdelaali Chaoub & Rachid Bennani & Ahmed Tamtaoui & Brahim Lakssir, 2024. "Energy Load Forecasting Techniques in Smart Grids: A Cross-Country Comparative Analysis," Energies, MDPI, vol. 17(10), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2251-:d:1389969
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/10/2251/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/10/2251/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wen, Lulu & Zhou, Kaile & Li, Jun & Wang, Shanyong, 2020. "Modified deep learning and reinforcement learning for an incentive-based demand response model," Energy, Elsevier, vol. 205(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui Wang & Yao Xu, 2024. "Optimized Decision-Making for Multi-Market Green Power Transactions of Electricity Retailers under Demand-Side Response: The Chinese Market Case Study," Energies, MDPI, vol. 17(11), pages 1-16, May.
    2. Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
    3. Ahmad, Tanveer & Madonski, Rafal & Zhang, Dongdong & Huang, Chao & Mujeeb, Asad, 2022. "Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    4. Lin, Jin & Dong, Jun & Liu, Dongran & Zhang, Yaoyu & Ma, Tongtao, 2022. "From peak shedding to low-carbon transitions: Customer psychological factors in demand response," Energy, Elsevier, vol. 238(PA).
    5. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    6. Zhu, Ziqing & Hu, Ze & Chan, Ka Wing & Bu, Siqi & Zhou, Bin & Xia, Shiwei, 2023. "Reinforcement learning in deregulated energy market: A comprehensive review," Applied Energy, Elsevier, vol. 329(C).
    7. Seongwoo Lee & Joonho Seon & Byungsun Hwang & Soohyun Kim & Youngghyu Sun & Jinyoung Kim, 2024. "Recent Trends and Issues of Energy Management Systems Using Machine Learning," Energies, MDPI, vol. 17(3), pages 1-24, January.
    8. Yang, Haolin & Schell, Kristen R., 2022. "GHTnet: Tri-Branch deep learning network for real-time electricity price forecasting," Energy, Elsevier, vol. 238(PC).
    9. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Zheng, Lingwei & Wu, Hao & Guo, Siqi & Sun, Xinyu, 2023. "Real-time dispatch of an integrated energy system based on multi-stage reinforcement learning with an improved action-choosing strategy," Energy, Elsevier, vol. 277(C).
    11. Kong, Xiangyu & Lu, Wenqi & Wu, Jianzhong & Wang, Chengshan & Zhao, Xv & Hu, Wei & Shen, Yu, 2023. "Real-time pricing method for VPP demand response based on PER-DDPG algorithm," Energy, Elsevier, vol. 271(C).
    12. Xu, Bo & Wang, Jiexin & Guo, Mengyuan & Lu, Jiayu & Li, Gehui & Han, Liang, 2021. "A hybrid demand response mechanism based on real-time incentive and real-time pricing," Energy, Elsevier, vol. 231(C).
    13. Wadim Strielkowski & Andrey Vlasov & Kirill Selivanov & Konstantin Muraviev & Vadim Shakhnov, 2023. "Prospects and Challenges of the Machine Learning and Data-Driven Methods for the Predictive Analysis of Power Systems: A Review," Energies, MDPI, vol. 16(10), pages 1-31, May.
    14. Zhang, Wenyu & Chen, Qian & Yan, Jianyong & Zhang, Shuai & Xu, Jiyuan, 2021. "A novel asynchronous deep reinforcement learning model with adaptive early forecasting method and reward incentive mechanism for short-term load forecasting," Energy, Elsevier, vol. 236(C).
    15. Wilson Pavon & Esteban Inga & Silvio Simani & Maddalena Nonato, 2021. "A Review on Optimal Control for the Smart Grid Electrical Substation Enhancing Transition Stability," Energies, MDPI, vol. 14(24), pages 1-15, December.
    16. Yin, Linfei & Luo, Shikui & Ma, Chenxiao, 2021. "Expandable depth and width adaptive dynamic programming for economic smart generation control of smart grids," Energy, Elsevier, vol. 232(C).
    17. Wu, Jiaman & Lu, Chenbei & Wu, Chenye & Shi, Jian & Gonzalez, Marta C. & Wang, Dan & Han, Zhu, 2024. "A cluster-based appliance-level-of-use demand response program design," Applied Energy, Elsevier, vol. 362(C).
    18. Eren, Yavuz & Küçükdemiral, İbrahim, 2024. "A comprehensive review on deep learning approaches for short-term load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    19. Liu, Di & Qin, Zhaoming & Hua, Haochen & Ding, Yi & Cao, Junwei, 2023. "Incremental incentive mechanism design for diversified consumers in demand response," Applied Energy, Elsevier, vol. 329(C).
    20. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Tian, Ning & Zhao, Wei, 2023. "Incentive-based demand response strategies for natural gas considering carbon emissions and load volatility," Applied Energy, Elsevier, vol. 348(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2251-:d:1389969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.