IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2023i1p159-d1308814.html
   My bibliography  Save this article

Enhancing LOCA Breach Size Diagnosis with Fundamental Deep Learning Models and Optimized Dataset Construction

Author

Listed:
  • Xingyu Xiao

    (Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
    These authors contributed equally to this work.)

  • Ben Qi

    (Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
    These authors contributed equally to this work.)

  • Jingang Liang

    (Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China)

  • Jiejuan Tong

    (Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China)

  • Qing Deng

    (Research Institute of Macro-Safety Science, University of Science and Technology Beijing, Beijing 100083, China)

  • Peng Chen

    (School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

In nuclear power plants, the loss-of-coolant accident (LOCA) stands out as the most prevalent and consequential incident. Accurate breach size diagnosis is crucial for the mitigation of LOCAs, and identifying the cause of an accident can prevent catastrophic consequences. Traditional methods mostly focus on combining model algorithms and utilize intricate composite model neural network architectures. However, it is crucial to investigate whether greater complexity necessarily leads to better performance. In addition, the consideration of the impact of dataset construction and data preprocessing on model performance is also needed for model building. This paper proposes a framework named DeepLOCA-Lattice to experiment with different preprocessing approaches to fundamental deep learning models for a comprehensive analysis of the diagnosis of LOCA breach size. The DeepLOCA-Lattice involves data preprocessing via the lattice algorithm and equal-interval partitioning and deep-learning-based models, including the multi-layer perceptron (MLP), recurrent neural networks (RNNs), convolutional neural networks (CNNs), and the transformer model in LOCA breach size diagnosis. After conducting rigorous ablation experiments, we have discovered that even rudimentary foundational models can achieve accuracy rates that exceed 90%. This is a significant improvement when compared to the previous models, which yield an accuracy rate of lower than 50%. The results interestingly demonstrate the superior performance and efficacy of the fundamental deep learning model, with an effective dataset construction approach. It elucidates the presence of a complex interplay among diagnostic scales, sliding window size, and sliding stride. Furthermore, our investigation reveals that the model attains its highest accuracy within the discussed range when utilizing a smaller sliding stride size and a longer sliding window length. This study could furnish valuable insights for constructing models for LOCA breach size estimation.

Suggested Citation

  • Xingyu Xiao & Ben Qi & Jingang Liang & Jiejuan Tong & Qing Deng & Peng Chen, 2023. "Enhancing LOCA Breach Size Diagnosis with Fundamental Deep Learning Models and Optimized Dataset Construction," Energies, MDPI, vol. 17(1), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:159-:d:1308814
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/1/159/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/1/159/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chunyuan Zhang & Pengyu Chen & Fangling Jiang & Jinsen Xie & Tao Yu, 2023. "Fault Diagnosis of Nuclear Power Plant Based on Sparrow Search Algorithm Optimized CNN-LSTM Neural Network," Energies, MDPI, vol. 16(6), pages 1-17, March.
    2. Ben Qi & Jingang Liang & Jiejuan Tong, 2023. "Fault Diagnosis Techniques for Nuclear Power Plants: A Review from the Artificial Intelligence Perspective," Energies, MDPI, vol. 16(4), pages 1-27, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min Zhang & Zhao Xu & Guichang Zhang & Binbin Wang & Bin Zhang & Yilong Liu, 2024. "Review on the Application of Living PSA in Nuclear Power," Energies, MDPI, vol. 17(22), pages 1-15, November.
    2. Chenyang Lai & Ibrahim Ahmed & Enrico Zio & Wei Li & Yiwang Zhang & Wenqing Yao & Juan Chen, 2024. "A Multistage Physics-Informed Neural Network for Fault Detection in Regulating Valves of Nuclear Power Plants," Energies, MDPI, vol. 17(11), pages 1-23, May.
    3. Xingyu Xiao & Jingang Liang & Jiejuan Tong & Haitao Wang, 2024. "Emergency Decision Support Techniques for Nuclear Power Plants: Current State, Challenges, and Future Trends," Energies, MDPI, vol. 17(10), pages 1-35, May.
    4. Zhiqiang Peng & Jichong Lei & Zining Ni & Tao Yu & Jinsen Xie & Jun Hong & Hong Hu, 2024. "Research on Data-Driven Methods for Solving High-Dimensional Neutron Transport Equations," Energies, MDPI, vol. 17(16), pages 1-11, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:159-:d:1308814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.