IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3951-d1141759.html
   My bibliography  Save this article

Energy Management Strategies of Grid-Connected Microgrids under Different Reliability Conditions

Author

Listed:
  • Mohammed Abdullah H. Alshehri

    (Faculty of Engineering and I.T., University of Technology Sydney, Sydney, NSW 2007, Australia)

  • Youguang Guo

    (Faculty of Engineering and I.T., University of Technology Sydney, Sydney, NSW 2007, Australia)

  • Gang Lei

    (Faculty of Engineering and I.T., University of Technology Sydney, Sydney, NSW 2007, Australia)

Abstract

The demand for a reliable, cheap and environmentally friendly source of energy makes the integration of renewable energy into power networks a global challenge. Furthermore, reliability, as one of the core elements of efficient and cost-effective energy management options, is still among the dominant factors/techniques that receive more attention for realistic penetrations of renewable energy into the electricity grid. This paper proposes an efficient way of energy management for a grid-connected microgrid. The grid-connected microgrid used in the analysis consists of solar photovoltaic (P.V.) and battery. In this microgrid configuration, oftentimes, the output power might not be equal to the system demand; in this regard, it is expected that the mismatch between these output powers is not zero. However, to reduce the mismatch between demand and supply to be close to zero, this paper proposes strategies of increasing the rated power of solar, battery and grid separately and combining them with a view of finding the cheapest option among these strategies. The results have shown that the cost increment for different options is USD 280.792, 84.48 and 48.204 for storage, P.V. and grid, respectively. These have shown that the storage option is the most expansive option for improving P.V. grid-connected microgrids. This is followed immediately by the P.V. option, which is weather dependent. On the other hand, the grid option is the cheapest option for system reliability improvement. This paper is expected to be useful to both new researchers and experts who are working in energy management with an emphasis on the reliability aspect.

Suggested Citation

  • Mohammed Abdullah H. Alshehri & Youguang Guo & Gang Lei, 2023. "Energy Management Strategies of Grid-Connected Microgrids under Different Reliability Conditions," Energies, MDPI, vol. 16(9), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3951-:d:1141759
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3951/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3951/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Axel Gautier & Julien Jacqmin & Jean-Christophe Poudou, 2018. "The prosumers and the grid," Journal of Regulatory Economics, Springer, vol. 53(1), pages 100-126, February.
    2. Chen, Y. & Trifkovic, M., 2018. "Optimal scheduling of a microgrid in a volatile electricity market environment: Portfolio optimization approach," Applied Energy, Elsevier, vol. 226(C), pages 703-712.
    3. Mashood Nasir & Hassan Abbas Khan & Irfan Khan & Naveed ul Hassan & Nauman Ahmad Zaffar & Aneeq Mehmood & Thilo Sauter & S. M. Muyeen, 2019. "Grid Load Reduction through Optimized PV Power Utilization in Intermittent Grids Using a Low-Cost Hardware Platform," Energies, MDPI, vol. 12(9), pages 1-21, May.
    4. Muhammad Umair Mutarraf & Yacine Terriche & Kamran Ali Khan Niazi & Fawad Khan & Juan C. Vasquez & Josep M. Guerrero, 2019. "Control of Hybrid Diesel/PV/Battery/Ultra-Capacitor Systems for Future Shipboard Microgrids," Energies, MDPI, vol. 12(18), pages 1-23, September.
    5. Jean-Christophe Poudou & Axel Gautier & Julien Jacqmin, 2018. "The prosumers and the grid," Post-Print hal-01810028, HAL.
    6. Asad Waqar & Muhammad Shahbaz Tanveer & Jehanzeb Ahmad & Muhammad Aamir & Muneeb Yaqoob & Fareeha Anwar, 2017. "Multi-Objective Analysis of a CHP Plant Integrated Microgrid in Pakistan," Energies, MDPI, vol. 10(10), pages 1-22, October.
    7. Hong-Chao Gao & Joon-Ho Choi & Sang-Yun Yun & Hak-Ju Lee & Seon-Ju Ahn, 2018. "Optimal Scheduling and Real-Time Control Schemes of Battery Energy Storage System for Microgrids Considering Contract Demand and Forecast Uncertainty," Energies, MDPI, vol. 11(6), pages 1-15, May.
    8. Li, Yang & Yang, Zhen & Li, Guoqing & Mu, Yunfei & Zhao, Dongbo & Chen, Chen & Shen, Bo, 2018. "Optimal scheduling of isolated microgrid with an electric vehicle battery swapping station in multi-stakeholder scenarios: A bi-level programming approach via real-time pricing," Applied Energy, Elsevier, vol. 232(C), pages 54-68.
    9. Dariush Khezrimotlagh & Yao Chen, 2018. "The Optimization Approach," International Series in Operations Research & Management Science, in: Decision Making and Performance Evaluation Using Data Envelopment Analysis, chapter 0, pages 107-134, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed S. Alahmed & Lang Tong, 2022. "Integrating Distributed Energy Resources: Optimal Prosumer Decisions and Impacts of Net Metering Tariffs," Papers 2204.06115, arXiv.org, revised May 2022.
    2. Hashemi, Majid & Jenkins, Glenn & Milne, Frank, 2023. "Rooftop solar with net metering: An integrated investment appraisal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Li, Yang & Wang, Bin & Yang, Zhen & Li, Jiazheng & Chen, Chen, 2022. "Hierarchical stochastic scheduling of multi-community integrated energy systems in uncertain environments via Stackelberg game," Applied Energy, Elsevier, vol. 308(C).
    4. Giulietti, Monica & Le Coq, Chloé & Willems, Bert & Anaya, Karim, 2019. "Smart Consumers in the Internet of Energy : Flexibility Markets & Services from Distributed Energy Resources," Other publications TiSEM 2edb43b5-bbd6-487d-abdf-7, Tilburg University, School of Economics and Management.
    5. De Groote, Olivier & Gautier, Axel & Verboven, Frank, 2024. "The political economy of financing climate policy — Evidence from the solar PV subsidy programs," Resource and Energy Economics, Elsevier, vol. 77(C).
    6. Díaz, Guzmán & Coto, José & Gómez-Aleixandre, Javier, 2019. "Prediction and explanation of the formation of the Spanish day-ahead electricity price through machine learning regression," Applied Energy, Elsevier, vol. 239(C), pages 610-625.
    7. Cambini, Carlo & Soroush, Golnoush, 2019. "Designing grid tariffs in the presence of distributed generation," Utilities Policy, Elsevier, vol. 61(C).
    8. Cao, K.H. & Qi, H.S. & Tsai, C.H. & Woo, C.K. & Zarnikau, J., 2021. "Energy trading efficiency in the US Midcontinent electricity markets," Applied Energy, Elsevier, vol. 302(C).
    9. Sai Bravo & Carole Haritchabalet, 2023. "Prosumers: Grid Storage vs Small Fuel-Cell," Working papers of Transitions Energétiques et Environnementales (TREE) hal-04119625, HAL.
    10. Ibrahim Abada, Andreas Ehrenmann, and Xavier Lambin, 2020. "On the Viability of Energy Communities," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    11. Sai Bravo & Carole Haritchabalet, 2023. "Prosumers: Grid Storage vs Small Fuel-Cell," Working Papers hal-04119625, HAL.
    12. Gautier, Axel & Jacqmin, Julien & Poudou, Jean-Christophe, 2021. "Optimal grid tariffs with heterogeneous prosumers," Utilities Policy, Elsevier, vol. 68(C).
    13. Cortade, Thomas & Poudou, Jean-Christophe, 2022. "Peer-to-peer energy platforms: Incentives for prosuming," Energy Economics, Elsevier, vol. 109(C).
    14. Axel Gautier & Julien Jacqmin, 2020. "PV adoption: the role of distribution tariffs under net metering," Journal of Regulatory Economics, Springer, vol. 57(1), pages 53-73, February.
    15. Hoarau, Quentin & Perez, Yannick, 2019. "Network tariff design with prosumers and electromobility: Who wins, who loses?," Energy Economics, Elsevier, vol. 83(C), pages 26-39.
    16. Clastres, Cédric & Percebois, Jacques & Rebenaque, Olivier & Solier, Boris, 2019. "Cross subsidies across electricity network users from renewable self-consumption," Utilities Policy, Elsevier, vol. 59(C), pages 1-1.
    17. Boampong, Richard & Brown, David P., 2020. "On the benefits of behind-the-meter rooftop solar and energy storage: The importance of retail rate design," Energy Economics, Elsevier, vol. 86(C).
    18. Boccard, Nicolas & Gautier, Axel, 2021. "Solar rebound: The unintended consequences of subsidies," Energy Economics, Elsevier, vol. 100(C).
    19. Bruno Moreno Rodrigo de Freitas, 2020. "Quantifying the effect of regulated volumetric electriciy tariffs on residential PV adoption under net metering scheme," Working papers of CATT hal-02976874, HAL.
    20. Hafiz Abdul Muqeet & Hafiz Mudassir Munir & Haseeb Javed & Muhammad Shahzad & Mohsin Jamil & Josep M. Guerrero, 2021. "An Energy Management System of Campus Microgrids: State-of-the-Art and Future Challenges," Energies, MDPI, vol. 14(20), pages 1-34, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3951-:d:1141759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.