IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3925-d1140554.html
   My bibliography  Save this article

An Optimal Control Method for Greenhouse Climate Management Considering Crop Growth’s Spatial Distribution and Energy Consumption

Author

Listed:
  • Kangji Li

    (School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Yanhui Mi

    (School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Wen Zheng

    (School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China)

Abstract

The environmental factors of greenhouses affect crop growth greatly and are mutually coupled and spatially distributed. Due to the complexity of greenhouse climate modeling, the current optimal control of greenhouse crop growth rarely considers the spatial distribution issues of environmental parameters. Proper Orthogonal Decomposition (POD) is a technique to reduce the order of a model by projecting it onto an orthogonal basis. In this paper, POD is used to extract environmental features from Computational Fluid Dynamics (CFD) simulations, and a low-dimensional feature subspace is obtained by energy truncation. With multi-dimensional interpolation, fast and low-dimensional reconstruction of the dynamic variation of greenhouse climates is achieved. On this basis, a rolling-horizon optimal control scheme is proposed. For each finite horizon, the external meteorological data are updated, and the response of the greenhouse environment is quickly calculated by the POD model. With the performance criterion J of maximizing crop production and energy efficiency, through the particle swarm optimization algorithm, the optimal settings for the greenhouse shading rate and the fan speed are derived. Such control computations are rolled forward during the whole planting season. Results of a case study show that the proposed method has low computation cost and high spacial resolution and can effectively improve the spatiotemporal accuracy of greenhouse climate management. In addition, different from traditional global optimal control methods, the proposed rolling-horizon scheme can correct various external disturbances in the procedure of crop growth, and thus it is more robust and has potential for engineering applications.

Suggested Citation

  • Kangji Li & Yanhui Mi & Wen Zheng, 2023. "An Optimal Control Method for Greenhouse Climate Management Considering Crop Growth’s Spatial Distribution and Energy Consumption," Energies, MDPI, vol. 16(9), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3925-:d:1140554
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3925/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3925/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kangji Li & Wenping Xue & Hanping Mao & Xu Chen & Hui Jiang & Gang Tan, 2019. "Optimizing the 3D Distributed Climate inside Greenhouses Using Multi-Objective Optimization Algorithms and Computer Fluid Dynamics," Energies, MDPI, vol. 12(15), pages 1-19, July.
    2. Fidaros, D.K. & Baxevanou, C.A. & Bartzanas, T. & Kittas, C., 2010. "Numerical simulation of thermal behavior of a ventilated arc greenhouse during a solar day," Renewable Energy, Elsevier, vol. 35(7), pages 1380-1386.
    3. Katzin, David & van Henten, Eldert J. & van Mourik, Simon, 2022. "Process-based greenhouse climate models: Genealogy, current status, and future directions," Agricultural Systems, Elsevier, vol. 198(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morice R. O. Odhiambo & Adnan Abbas & Xiaochan Wang & Ehsan Elahi, 2020. "Thermo-Environmental Assessment of a Heated Venlo-Type Greenhouse in the Yangtze River Delta Region," Sustainability, MDPI, vol. 12(24), pages 1-34, December.
    2. Gloria Alexandra Ortiz Rocha & Maria Angelica Pichimata & Edwin Villagran, 2021. "Research on the Microclimate of Protected Agriculture Structures Using Numerical Simulation Tools: A Technical and Bibliometric Analysis as a Contribution to the Sustainability of Under-Cover Cropping," Sustainability, MDPI, vol. 13(18), pages 1-40, September.
    3. Saberian, Ayad & Sajadiye, Seyed Majid, 2019. "The effect of dynamic solar heat load on the greenhouse microclimate using CFD simulation," Renewable Energy, Elsevier, vol. 138(C), pages 722-737.
    4. Edwin Villagran & Rommel Leon & Andrea Rodriguez & Jorge Jaramillo, 2020. "3D Numerical Analysis of the Natural Ventilation Behavior in a Colombian Greenhouse Established in Warm Climate Conditions," Sustainability, MDPI, vol. 12(19), pages 1-27, October.
    5. Guan, Yong & Wang, Tuo & Tang, Rui & Hu, Wanling & Guo, Jianxuan & Yang, Huijun & Zhang, Yun & Duan, Shijian, 2020. "Numerical study on the heat release capacity of the active-passive phase change wall affected by ventilation velocity," Renewable Energy, Elsevier, vol. 150(C), pages 1047-1056.
    6. Subin Mattara Chalill & Snehaunshu Chowdhury & Ramanujam Karthikeyan, 2021. "Prediction of Key Crop Growth Parameters in a Commercial Greenhouse Using CFD Simulation and Experimental Verification in a Pilot Study," Agriculture, MDPI, vol. 11(7), pages 1-23, July.
    7. Hankun Lin & Yiqiang Xiao & Florian Musso & Yao Lu, 2019. "Green Façade Effects on Thermal Environment in Transitional Space: Field Measurement Studies and Computational Fluid Dynamics Simulations," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
    8. Andrea Colantoni & Rodolfo Picchio & Alvaro Marucci & Elena Di Mattia & Valerio Cristofori & Fabio Recanatesi & Mauro Villarini & Danilo Monarca & Massimo Cecchini, 2020. "WP3—Innovation in Agriculture and Forestry Sector for Energetic Sustainability," Energies, MDPI, vol. 13(22), pages 1-7, November.
    9. Se-Jun Park & In-Bok Lee & Sang-Yeon Lee & Jun-Gyu Kim & Young-Bae Choi & Cristina Decano-Valentin & Jeong-Hwa Cho & Hyo-Hyeog Jeong & Uk-Hyeon Yeo, 2022. "Numerical Analysis of Ventilation Efficiency of a Korean Venlo-Type Greenhouse with Continuous Roof Vents," Agriculture, MDPI, vol. 12(9), pages 1-22, August.
    10. Yang, An-Shik & Juan, Yu-Hsuan & Wen, Chih-Yung & Chang, Chao-Jui, 2017. "Numerical simulation of cooling effect of vegetation enhancement in a subtropical urban park," Applied Energy, Elsevier, vol. 192(C), pages 178-200.
    11. Di Qi & Chuangyao Zhao & Shixiong Li & Ran Chen & Angui Li, 2021. "Numerical Assessment of Earth to Air Heat Exchanger with Variable Humidity Conditions in Greenhouses," Energies, MDPI, vol. 14(5), pages 1-18, March.
    12. Nebbali, R. & Roy, J.C. & Boulard, T., 2012. "Dynamic simulation of the distributed radiative and convective climate within a cropped greenhouse," Renewable Energy, Elsevier, vol. 43(C), pages 111-129.
    13. Misbaudeen Aderemi Adesanya & Wook-Ho Na & Anis Rabiu & Qazeem Opeyemi Ogunlowo & Timothy Denen Akpenpuun & Adnan Rasheed & Yong-Cheol Yoon & Hyun-Woo Lee, 2022. "TRNSYS Simulation and Experimental Validation of Internal Temperature and Heating Demand in a Glass Greenhouse," Sustainability, MDPI, vol. 14(14), pages 1-30, July.
    14. Román-Roldán, N.I. & Ituna Yudonago, J.F. & López-Ortiz, A. & Rodríguez-Ramírez, J. & Sandoval-Torres, S., 2021. "A new air recirculation system for homogeneous solar drying: Computational fluid dynamics approach," Renewable Energy, Elsevier, vol. 179(C), pages 1727-1741.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3925-:d:1140554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.