IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3725-d1133817.html
   My bibliography  Save this article

Thermal Performance Optimization Simulation Study of a Passive Solar House with a Light Steel Structure and Phase Change Walls

Author

Listed:
  • Lei Cheng

    (Department of Military Installations, Army Logistics Academy of PLA, Chongqing 401331, China)

  • Chunlong Zhuang

    (Department of Military Installations, Army Logistics Academy of PLA, Chongqing 401331, China)

  • Shengbo Li

    (Department of Military Installations, Army Logistics Academy of PLA, Chongqing 401331, China)

  • Guangqin Huang

    (Department of Military Installations, Army Logistics Academy of PLA, Chongqing 401331, China)

  • Hongyu Zhang

    (Department of Military Installations, Army Logistics Academy of PLA, Chongqing 401331, China)

  • Fei Gan

    (Department of Military Installations, Army Logistics Academy of PLA, Chongqing 401331, China)

  • Ningge Xu

    (Department of Military Installations, Army Logistics Academy of PLA, Chongqing 401331, China)

  • Shanshan Hou

    (Department of Military Installations, Army Logistics Academy of PLA, Chongqing 401331, China)

Abstract

Phase change materials are used in passive solar house construction with light steel structure walls, which can overcome the problems of weak heat storage capacity and poor utilization of solar heat and effectively solve the thermal defects of light steel structure walls. Based on this, on the basis of preliminary experimental research, this study further carried out theoretical analysis and simulation research on the thermal performance of a light steel structure passive solar house (Trombe form) with PCM walls. Through the heat balance analysis of heat transfer in the heat collecting partition wall, the theoretical calculation formula of the phase change temperature of the PCM was obtained, and it verified theoretically that the phase change temperature value should be 1–3 °C higher than the target indoor air temperature. The evaluation index “accumulated daily indoor temperature offset value” was proposed for evaluating the effect of phase change materials on the indoor temperature of the passive solar house, and “EnergyPlus” software was used to study the influence of the phase change temperature, the amount of material, and the thickness of the insulation layer on the indoor air temperature in a natural day. The results showed that there was a coupling relationship among the performance and between of the thickness of the PCM layer and the phase change temperature. Under typical diurnal climate conditions in the northern Tibetan Plateau of China, the optimal combination of the phase change temperature and the layer thickness was 17 °C and 15 mm, respectively. Especially at a certain temperature, excessive increases in the thickness of the phase transition layer could not improve the indoor thermal environment. For this transition temperature, there exists an optimal transition layer thickness. For a Trombe solar house, the thickness of the insulation layer has an independent impact on indoor temperature compared to other factors, which has an economic value, such as 50 mm in this case. In general, this paper studied the relationship between several important parameters of the phase change wall of a solar house by using numerical simulation methods and quantitatively calculated the optimal parameters under typical meteorological conditions, thus providing a feasible simulation design method for similar engineering applications.

Suggested Citation

  • Lei Cheng & Chunlong Zhuang & Shengbo Li & Guangqin Huang & Hongyu Zhang & Fei Gan & Ningge Xu & Shanshan Hou, 2023. "Thermal Performance Optimization Simulation Study of a Passive Solar House with a Light Steel Structure and Phase Change Walls," Energies, MDPI, vol. 16(9), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3725-:d:1133817
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3725/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3725/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiang, Wei & Zhang, Kuan & Ma, Lingyong & Liu, Bo & Li, Qing & Li, Dong & Qi, Hanbing & Liu, Yang, 2022. "Energy-saving retrofits of prefabricated house roof in severe cold area," Energy, Elsevier, vol. 254(PC).
    2. Ramakrishnan, Sayanthan & Wang, Xiaoming & Sanjayan, Jay & Wilson, John, 2017. "Thermal performance of buildings integrated with phase change materials to reduce heat stress risks during extreme heatwave events," Applied Energy, Elsevier, vol. 194(C), pages 410-421.
    3. Devaux, Paul & Farid, Mohammed Mehdi, 2017. "Benefits of PCM underfloor heating with PCM wallboards for space heating in winter," Applied Energy, Elsevier, vol. 191(C), pages 593-602.
    4. Yu, Tao & Liu, Bowan & Lei, Bo & Yuan, Yanping & Bi, Haiquan & Zhang, Zili, 2019. "Thermal performance of a heating system combining solar air collector with hollow ventilated interior wall in residential buildings on Tibetan Plateau," Energy, Elsevier, vol. 182(C), pages 93-109.
    5. Fang, Yiping & Wei, Yanqiang, 2013. "Climate change adaptation on the Qinghai–Tibetan Plateau: The importance of solar energy utilization for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 508-518.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nie, Binjian & She, Xiaohui & Du, Zheng & Xie, Chunping & Li, Yongliang & He, Zhubing & Ding, Yulong, 2019. "System performance and economic assessment of a thermal energy storage based air-conditioning unit for transport applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Alam, Morshed & Zou, Patrick X.W. & Sanjayan, Jay & Ramakrishnan, Sayanthan, 2019. "Energy saving performance assessment and lessons learned from the operation of an active phase change materials system in a multi-storey building in Melbourne," Applied Energy, Elsevier, vol. 238(C), pages 1582-1595.
    3. Lamrani, B. & Johannes, K. & Kuznik, F., 2021. "Phase change materials integrated into building walls: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    4. Nie, Binjian & Palacios, Anabel & Zou, Boyang & Liu, Jiaxu & Zhang, Tongtong & Li, Yunren, 2020. "Review on phase change materials for cold thermal energy storage applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Gholamibozanjani, Gohar & Farid, Mohammed, 2020. "A comparison between passive and active PCM systems applied to buildings," Renewable Energy, Elsevier, vol. 162(C), pages 112-123.
    6. Bimaganbetova, Madina & Memon, Shazim Ali & Sheriyev, Almas, 2020. "Performance evaluation of phase change materials suitable for cities representing the whole tropical savanna climate region," Renewable Energy, Elsevier, vol. 148(C), pages 402-416.
    7. Wang, Guohui & Yang, Yanan & Wang, Shuxin & Zhang, Hongwei & Wang, Yanhui, 2019. "Efficiency analysis and experimental validation of the ocean thermal energy conversion with phase change material for underwater vehicle," Applied Energy, Elsevier, vol. 248(C), pages 475-488.
    8. Abraham Nathan Zoure & Paolo Vincenzo Genovese, 2023. "Comparative Study of the Impact of Bio-Sourced and Recycled Insulation Materials on Energy Efficiency in Office Buildings in Burkina Faso," Sustainability, MDPI, vol. 15(2), pages 1-26, January.
    9. Pang, Mingyue & Zhang, Lixiao & Bahaj, AbuBakr S. & Xu, Kaipeng & Hao, Yan & Wang, Changbo, 2018. "Small hydropower development in Tibet: Insight from a survey in Nagqu Prefecture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3032-3040.
    10. Wang, XiaoLong & Sun, GuoChen & Zhang, LinHua & Lei, WenJun & Zhang, WenKe & Li, HaoYi & Zhang, ChunYue & Guo, JingChenxi, 2023. "Application of green energy in smart rural passive heating: A case study of indoor temperature self-regulating greenhouse of winter in Jinan, China," Energy, Elsevier, vol. 278(C).
    11. Yang, Shiyu & Oliver Gao, H. & You, Fengqi, 2022. "Model predictive control in phase-change-material-wallboard-enhanced building energy management considering electricity price dynamics," Applied Energy, Elsevier, vol. 326(C).
    12. Saafi, Khawla & Daouas, Naouel, 2019. "Energy and cost efficiency of phase change materials integrated in building envelopes under Tunisia Mediterranean climate," Energy, Elsevier, vol. 187(C).
    13. Lee, Haksung & Ozaki, Akihito, 2018. "Sensitivity analysis for optimization of renewable-energy-based air-circulation-type temperature-control system," Applied Energy, Elsevier, vol. 230(C), pages 317-329.
    14. Zhang, Long & Zhou, Kechao & Wei, Quiping & Ma, Li & Ye, Wentao & Li, Haichao & Zhou, Bo & Yu, Zhiming & Lin, Cheng-Te & Luo, Jingting & Gan, Xueping, 2019. "Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage," Applied Energy, Elsevier, vol. 233, pages 208-219.
    15. Mehreen Saleem Gul & Hassam Nasarullah Chaudhry, 2022. "Energy Efficiency, Low Carbon Resources and Renewable Technology," Energies, MDPI, vol. 15(13), pages 1-3, June.
    16. Li Huang & Udo Piontek & Lulu Zhuang & Rongyue Zheng & Deqiu Zou, 2023. "Study on Thermal Performance of Electric Heating System with Salt Hydrate-PCM Storage," Energies, MDPI, vol. 16(20), pages 1-21, October.
    17. Zhang, Lige & Spatari, Sabrina & Sun, Ying, 2020. "Life cycle assessment of novel heat exchanger for dry cooling of power plants based on encapsulated phase change materials," Applied Energy, Elsevier, vol. 271(C).
    18. Gür, Muhammed & Öztop, Hakan F. & Selimefendigil, Fatih, 2023. "Analysis of solar underfloor heating system assisted with nano enhanced phase change material for nearly zero energy buildings approach," Renewable Energy, Elsevier, vol. 218(C).
    19. Ait Laasri, Imad & Es-sakali, Niima & Charai, Mouatassim & Mghazli, Mohamed Oualid & Outzourhit, Abdelkader, 2024. "Recent progress, limitations, and future directions of macro-encapsulated phase change materials for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    20. Jianchu Xu & R. Grumbine, 2014. "Integrating local hybrid knowledge and state support for climate change adaptation in the Asian Highlands," Climatic Change, Springer, vol. 124(1), pages 93-104, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3725-:d:1133817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.