IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3666-d1131847.html
   My bibliography  Save this article

Analyzing the Performance of Thermoelectric Generators with Inhomogeneous Legs: Coupled Material–Device Modelling for Mg 2 X -Based TEG Prototypes

Author

Listed:
  • Julia Camut

    (Department of Thermoelectric Materials and Systems, Institute of Materials Research, German Aerospace Center, 51147 Cologne, Germany)

  • Eckhard Müller

    (Department of Thermoelectric Materials and Systems, Institute of Materials Research, German Aerospace Center, 51147 Cologne, Germany
    Institute of Inorganic and Analytical Chemistry, JLU Giessen, 35390 Giessen, Germany)

  • Johannes de Boor

    (Department of Thermoelectric Materials and Systems, Institute of Materials Research, German Aerospace Center, 51147 Cologne, Germany
    Institute of Technology for Nanostructures (NST) and CENIDE, Faculty of Engineering, University of Duisburg-Essen, 47057 Duisburg, Germany)

Abstract

Thermoelectric generators (TEGs) possess the ability to generate electrical power from heat. As TEGs are operated under a thermal gradient, inhomogeneous material properties—either by design or due to inhomogeneous material degradation under thermal load—are commonly found. However, this cannot be addressed using standard approaches for performance analysis of TEGs in which spatially homogeneous materials are assumed. Therefore, an innovative method of analysis, which can incorporate inhomogeneous material properties, is presented in this study. This is crucial to understand the measured performance parameters of TEGs and, from this, develop means to improve their longevity. The analysis combines experimental profiling of inhomogeneous material properties, modelling of the material properties using a single parabolic band model, and calculation of device properties using the established Constant Property Model. We compare modeling results assuming homogeneous and inhomogeneous properties to the measurement results of an Mg 2 (Si,Sn)-based TEG prototype. We find that relevant discrepancies lie in the effective temperature difference across the TE leg, which decreases by ~10%, and in the difference between measured and calculated heat flow, which increases from 2–15% to 9–16% when considering the inhomogeneous material. The approach confirms additional resistances in the TEG as the main performance loss mechanism and allows the accurate calculation of the impact of different improvements on the TEG’s performance.

Suggested Citation

  • Julia Camut & Eckhard Müller & Johannes de Boor, 2023. "Analyzing the Performance of Thermoelectric Generators with Inhomogeneous Legs: Coupled Material–Device Modelling for Mg 2 X -Based TEG Prototypes," Energies, MDPI, vol. 16(9), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3666-:d:1131847
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3666/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3666/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ponnusamy, P. & de Boor, J. & Müller, E., 2020. "Using the constant properties model for accurate performance estimation of thermoelectric generator elements," Applied Energy, Elsevier, vol. 262(C).
    2. Karellas, S. & Leontaritis, A.-D. & Panousis, G. & Bellos, E. & Kakaras, E., 2013. "Energetic and exergetic analysis of waste heat recovery systems in the cement industry," Energy, Elsevier, vol. 58(C), pages 147-156.
    3. Twaha, Ssennoga & Zhu, Jie & Yan, Yuying & Li, Bo, 2016. "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 698-726.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jung, Chung Woo & Song, Joo Young & Kang, Yong Tae, 2018. "Study on ammonia/water hybrid absorption/compression heat pump cycle to produce high temperature process water," Energy, Elsevier, vol. 145(C), pages 458-467.
    2. Li, Pengcheng & Cao, Qing & Li, Jing & Lin, Haiwei & Wang, Yandong & Gao, Guangtao & Pei, Gang & Jie, Desuan & Liu, Xunfen, 2021. "An innovative approach to recovery of fluctuating industrial exhaust heat sources using cascade Rankine cycle and two-stage accumulators," Energy, Elsevier, vol. 228(C).
    3. Reyes García-Contreras & Andrés Agudelo & Arántzazu Gómez & Pablo Fernández-Yáñez & Octavio Armas & Ángel Ramos, 2019. "Thermoelectric Energy Recovery in a Light-Duty Diesel Vehicle under Real-World Driving Conditions at Different Altitudes with Diesel, Biodiesel and GTL Fuels," Energies, MDPI, vol. 12(6), pages 1-18, March.
    4. Liya Ren & Jianyu Liu & Huaixin Wang, 2020. "Thermodynamic Optimization of a Waste Heat Power System under Economic Constraint," Energies, MDPI, vol. 13(13), pages 1-23, July.
    5. Mikulčić, Hrvoje & Vujanović, Milan & Ashhab, Moh'd Sami & Duić, Neven, 2014. "Large eddy simulation of a two-phase reacting swirl flow inside a cement cyclone," Energy, Elsevier, vol. 75(C), pages 89-96.
    6. Kai Yang & Hongguang Zhang & Songsong Song & Jian Zhang & Yuting Wu & Yeqiang Zhang & Hongjin Wang & Ying Chang & Chen Bei, 2014. "Performance Analysis of the Vehicle Diesel Engine-ORC Combined System Based on a Screw Expander," Energies, MDPI, vol. 7(5), pages 1-20, May.
    7. Utlu, Zafer, 2015. "Investigation of the potential for heat recovery at low, medium, and high stages in the Turkish industrial sector (TIS): An application," Energy, Elsevier, vol. 81(C), pages 394-405.
    8. Chen, Wei-Hsin & Wang, Chi-Ming & Lee, Da-Sheng & Kwon, Eilhann E. & Ashokkumar, Veeramuthu & Culaba, Alvin B., 2022. "Optimization design by evolutionary computation for minimizing thermal stress of a thermoelectric generator with varied numbers of square pin fins," Applied Energy, Elsevier, vol. 314(C).
    9. Liu, Yan & Yang, Jian & Wang, Jin & Cheng, Zhi-long & Wang, Qiu-wang, 2014. "Energy and exergy analysis for waste heat cascade utilization in sinter cooling bed," Energy, Elsevier, vol. 67(C), pages 370-380.
    10. Yali Wang & Haidong Yang & Kangkang Xu, 2020. "Thermal Performance Combined with Cooling System Parameters Study for a Roller Kiln Based on Energy-Exergy Analysis," Energies, MDPI, vol. 13(15), pages 1-31, July.
    11. Luo, Ding & Yan, Yuying & Li, Ying & Wang, Ruochen & Cheng, Shan & Yang, Xuelin & Ji, Dongxu, 2023. "A hybrid transient CFD-thermoelectric numerical model for automobile thermoelectric generator systems," Applied Energy, Elsevier, vol. 332(C).
    12. Firth, Anton & Zhang, Bo & Yang, Aidong, 2019. "Quantification of global waste heat and its environmental effects," Applied Energy, Elsevier, vol. 235(C), pages 1314-1334.
    13. Xue, Xiaodi & Guo, Cong & Du, Xiaoze & Yang, Lijun & Yang, Yongping, 2015. "Thermodynamic analysis and optimization of a two-stage organic Rankine cycle for liquefied natural gas cryogenic exergy recovery," Energy, Elsevier, vol. 83(C), pages 778-787.
    14. Luo, Ding & Wang, Ruochen & Yu, Wei & Zhou, Weiqi, 2019. "Performance evaluation of a novel thermoelectric module with BiSbTeSe-based material," Applied Energy, Elsevier, vol. 238(C), pages 1299-1311.
    15. Daniel Sanin-Villa & Oscar D. Monsalve-Cifuentes & Elkin E. Henao-Bravo, 2021. "Evaluation of Thermoelectric Generators under Mismatching Conditions," Energies, MDPI, vol. 14(23), pages 1-20, December.
    16. Nami, Hossein & Anvari-Moghaddam, Amjad, 2020. "Small-scale CCHP systems for waste heat recovery from cement plants: Thermodynamic, sustainability and economic implications," Energy, Elsevier, vol. 192(C).
    17. N. Kanagaraj & Hegazy Rezk & Mohamed R. Gomaa, 2020. "A Variable Fractional Order Fuzzy Logic Control Based MPPT Technique for Improving Energy Conversion Efficiency of Thermoelectric Power Generator," Energies, MDPI, vol. 13(17), pages 1-18, September.
    18. Ibáñez-Puy, Elia & Martín-Gómez, César & Bermejo-Busto, Javier & Zuazua-Ros, Amaia, 2018. "Thermal and energy performance assessment of a thermoelectric heat pump integrated in an adiabatic box," Applied Energy, Elsevier, vol. 228(C), pages 681-688.
    19. Skabelund, B.B. & Milcarek, R.J., 2022. "Review of thermal partial oxidation reforming with integrated solid oxide fuel cell power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    20. Kwan, Trevor Hocksun & Wu, Xiaofeng & Yao, Qinghe, 2018. "Multi-objective genetic optimization of the thermoelectric system for thermal management of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 217(C), pages 314-327.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3666-:d:1131847. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.