IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i8p3582-d1128815.html
   My bibliography  Save this article

Generator Fault Diagnosis with Bit-Coding Support Vector Regression Algorithm

Author

Listed:
  • Whei-Min Lin

    (School of Mechanical and Electrical Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 361005, China)

Abstract

Generator fault diagnosis has a great impact on power networks. With the coupling effects, some uncertain factors, and all the complexities of generator design, fault diagnosis is difficult using any theoretical analysis or mathematical model. This paper proposes a bit-coding support vector regression (BSVR) algorithm for turbine generator fault diagnosis (GFD) based on a support vector machine (SVM) capable of processing multiple classification problems of fault diagnosis. The BSVR can simplify the design architecture and reduce the processing time for detection, where m classifier is needed for m class problems compared to the [ m ( m − 1)]/2 size of the original multi-class SVM. Compared with conventional methods, numerical test results showed a high accuracy, good robustness, and a faster processing performance.

Suggested Citation

  • Whei-Min Lin, 2023. "Generator Fault Diagnosis with Bit-Coding Support Vector Regression Algorithm," Energies, MDPI, vol. 16(8), pages 1-14, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3582-:d:1128815
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/8/3582/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/8/3582/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Entezami, M. & Hillmansen, S. & Weston, P. & Papaelias, M.Ph., 2012. "Fault detection and diagnosis within a wind turbine mechanical braking system using condition monitoring," Renewable Energy, Elsevier, vol. 47(C), pages 175-182.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.
    2. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
    3. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    4. Jianjun Chen & Weihao Hu & Di Cao & Bin Zhang & Qi Huang & Zhe Chen & Frede Blaabjerg, 2019. "An Imbalance Fault Detection Algorithm for Variable-Speed Wind Turbines: A Deep Learning Approach," Energies, MDPI, vol. 12(14), pages 1-15, July.
    5. Cross, Philip & Ma, Xiandong, 2014. "Nonlinear system identification for model-based condition monitoring of wind turbines," Renewable Energy, Elsevier, vol. 71(C), pages 166-175.
    6. Márquez, Fausto Pedro García & Pérez, Jesús María Pinar & Marugán, Alberto Pliego & Papaelias, Mayorkinos, 2016. "Identification of critical components of wind turbines using FTA over the time," Renewable Energy, Elsevier, vol. 87(P2), pages 869-883.
    7. Lin, Yonggang & Tu, Le & Liu, Hongwei & Li, Wei, 2016. "Fault analysis of wind turbines in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 482-490.
    8. Yuri Merizalde & Luis Hernández-Callejo & Oscar Duque-Perez & Víctor Alonso-Gómez, 2019. "Maintenance Models Applied to Wind Turbines. A Comprehensive Overview," Energies, MDPI, vol. 12(2), pages 1-41, January.
    9. Mérigaud, Alexis & Ringwood, John V., 2016. "Condition-based maintenance methods for marine renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 53-78.
    10. Fausto Pedro García Márquez & Alberto Pliego Marugán & Jesús María Pinar Pérez & Stuart Hillmansen & Mayorkinos Papaelias, 2017. "Optimal Dynamic Analysis of Electrical/Electronic Components in Wind Turbines," Energies, MDPI, vol. 10(8), pages 1-19, July.
    11. Li, Y.F. & Valla, S. & Zio, E., 2015. "Reliability assessment of generic geared wind turbines by GTST-MLD model and Monte Carlo simulation," Renewable Energy, Elsevier, vol. 83(C), pages 222-233.
    12. Li, Jimeng & Chen, Xuefeng & Du, Zhaohui & Fang, Zuowei & He, Zhengjia, 2013. "A new noise-controlled second-order enhanced stochastic resonance method with its application in wind turbine drivetrain fault diagnosis," Renewable Energy, Elsevier, vol. 60(C), pages 7-19.
    13. Sequeira, C. & Pacheco, A. & Galego, P. & Gorbeña, E., 2019. "Analysis of the efficiency of wind turbine gearboxes using the temperature variable," Renewable Energy, Elsevier, vol. 135(C), pages 465-472.
    14. Liu, W.Y. & Tang, B.P. & Han, J.G. & Lu, X.N. & Hu, N.N. & He, Z.Z., 2015. "The structure healthy condition monitoring and fault diagnosis methods in wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 466-472.
    15. Md Liton Hossain & Ahmed Abu-Siada & S. M. Muyeen, 2018. "Methods for Advanced Wind Turbine Condition Monitoring and Early Diagnosis: A Literature Review," Energies, MDPI, vol. 11(5), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3582-:d:1128815. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.