IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i8p3545-d1127686.html
   My bibliography  Save this article

The Influence Mechanism of Neutron Kinetics of the Accelerator-Driven Subcritical Reactor Based on the Fast/Thermal Neutron Spectra by Monte Carlo Homogenization Method

Author

Listed:
  • Nianbiao Deng

    (School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, China)

  • Chao Xie

    (School of Nuclear Science and Technology, University of South China, Hengyang 421001, China)

  • Cheng Hou

    (China Institute of Atomic Energy, Beijing 102413, China)

  • Zhulun Li

    (School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China)

  • Jinsen Xie

    (School of Nuclear Science and Technology, University of South China, Hengyang 421001, China)

  • Tao Yu

    (School of Nuclear Science and Technology, University of South China, Hengyang 421001, China)

Abstract

For the sake of understanding the mechanism of deep subcriticality and high heterogeneity of neutron fluence rate in time–space on the neutron kinetics of the Accelerator-driven Subcritical Reactor Subcritical Reactor (ADSR) under varied beam transients and neutron spectra. A Monte Carlo homogenization approach for the neutron time–space kinetics of the ADSR is proposed in this study, and the influence mechanism on the kinetic parameters of the ADSR under varied neutron spectra, subcriticality, and beam transients is examined. The results show that the Monte Carlo homogenization for the α eigenvalue mode is more adaptable to the subcriticality characteristics under varied subcriticality; under beam transients, the relative differences in the kinetic parameters of the different modes of the ADSR with fast/thermal spectra increase with the depth of subcriticality, and the differences in neutron generation time for varied modes are larger than those of effective fraction of delayed neutron. Thus, it is recommended to use a more adaptable Monte Carlo homogenization method for the time–space kinetics of ADSR, and the effects of the high heterogeneity of neutron fluence rate and deep subcriticality in time–space on the neutron generation time should be considered.

Suggested Citation

  • Nianbiao Deng & Chao Xie & Cheng Hou & Zhulun Li & Jinsen Xie & Tao Yu, 2023. "The Influence Mechanism of Neutron Kinetics of the Accelerator-Driven Subcritical Reactor Based on the Fast/Thermal Neutron Spectra by Monte Carlo Homogenization Method," Energies, MDPI, vol. 16(8), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3545-:d:1127686
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/8/3545/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/8/3545/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Przemysław Stanisz & Mikołaj Oettingen & Jerzy Cetnar, 2022. "Development of a Trajectory Period Folding Method for Burnup Calculations," Energies, MDPI, vol. 15(6), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maithah M. Alaleeli & Saeed A. Alameri & Mohammad Alrwashdeh, 2022. "Neutronic Analysis of SiC/SiC Sandwich Cladding Design in APR-1400 under Normal Operation Conditions," Energies, MDPI, vol. 15(14), pages 1-20, July.
    2. Ruslan Irkimbekov & Alexander Vurim & Galina Vityuk & Olzhas Zhanbolatov & Zamanbek Kozhabayev & Artur Surayev, 2023. "Modeling of Dynamic Operation Modes of IVG.1M Reactor," Energies, MDPI, vol. 16(2), pages 1-20, January.
    3. Mohammad Alrwashdeh & Saeed A. Alameri, 2022. "Chromium-Coated Zirconium Cladding Neutronics Impact for APR-1400 Reactor Core," Energies, MDPI, vol. 15(21), pages 1-16, October.
    4. Mikołaj Oettingen & Juyoul Kim, 2023. "Detection of Numerical Power Shift Anomalies in Burnup Modeling of a PWR Reactor," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    5. Mikołaj Oettingen, 2022. "The Application of Radiochemical Measurements of PWR Spent Fuel for the Validation of Burnup Codes," Energies, MDPI, vol. 15(9), pages 1-15, April.
    6. Mohannad Khameis Almteiri & Juyoul Kim, 2022. "Applications of Machine Learning to Consequence Analysis of Hypothetical Accidents at Barakah Nuclear Power Plant Unit 1," Energies, MDPI, vol. 15(16), pages 1-11, August.
    7. Minyu Peng & Yafen Liu & Yang Zou & Ye Dai, 2023. "Preliminary Design and Study of a Small Modular Chlorine Salt Fast Reactor Cooled by Supercritical Carbon Dioxide," Energies, MDPI, vol. 16(13), pages 1-18, June.
    8. Nailia Rakhimova, 2022. "Recent Advances in Alternative Cementitious Materials for Nuclear Waste Immobilization: A Review," Sustainability, MDPI, vol. 15(1), pages 1-25, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3545-:d:1127686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.