IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2462-d780772.html
   My bibliography  Save this article

A Method of Probability Distribution Modeling of Multi-Dimensional Conditions for Wind Power Forecast Error Based on MNSGA-II-Kmeans

Author

Listed:
  • Jian Yang

    (North China Branch of State Grid Corporation of China, Beijing 100053, China)

  • Yu Liu

    (North China Branch of State Grid Corporation of China, Beijing 100053, China)

  • Shangguang Jiang

    (North China Branch of State Grid Corporation of China, Beijing 100053, China)

  • Yazhou Luo

    (North China Branch of State Grid Corporation of China, Beijing 100053, China)

  • Nianzhang Liu

    (School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

  • Deping Ke

    (School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

Abstract

How to consider both the influence of weather and wind power in the modeling process of probability distribution of wind power forecast error (WPFE), and to emphasize the application value of conditional modeling, is rarely studied at present. This paper proposes a novel method of conditional probability distribution modeling for WPFE. This method uses a proposed MNSGA-II-Kmeans algorithm to perform multi-objective clustering of multi-dimensional influencing factors (MDIF), including weather and wind power. It can maximize the difference between the probability distributions of each MDIF mode’s WPFE while clustering, thus ensuring the application value of the conditional modeling way. Based on the clustering results, by using the versatile distribution to simulate the probability distribution of WPFE and the support vector machine to realize the recognition of MDIF modes, the specific conditional probability distribution function of WPFE can be provided to stochastic economic dispatch by identifying the forecast MDIF data. A wind plant of north China with historical data is selected for calculation. The results verify the effectiveness of the proposed method, and by comparison with the non-conditional probability distribution of WPFE that does not consider MDIF, it can effectively increase the wind power consumption of the power system.

Suggested Citation

  • Jian Yang & Yu Liu & Shangguang Jiang & Yazhou Luo & Nianzhang Liu & Deping Ke, 2022. "A Method of Probability Distribution Modeling of Multi-Dimensional Conditions for Wind Power Forecast Error Based on MNSGA-II-Kmeans," Energies, MDPI, vol. 15(7), pages 1-21, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2462-:d:780772
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2462/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2462/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jung, Jaesung & Broadwater, Robert P., 2014. "Current status and future advances for wind speed and power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 762-777.
    2. Tascikaraoglu, A. & Uzunoglu, M., 2014. "A review of combined approaches for prediction of short-term wind speed and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 243-254.
    3. Zhang, Yao & Wang, Jianxue & Wang, Xifan, 2014. "Review on probabilistic forecasting of wind power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 255-270.
    4. Lotfan, S. & Ghiasi, R. Akbarpour & Fallah, M. & Sadeghi, M.H., 2016. "ANN-based modeling and reducing dual-fuel engine’s challenging emissions by multi-objective evolutionary algorithm NSGA-II," Applied Energy, Elsevier, vol. 175(C), pages 91-99.
    5. Fachrizal Aksan & Michał Jasiński & Tomasz Sikorski & Dominika Kaczorowska & Jacek Rezmer & Vishnu Suresh & Zbigniew Leonowicz & Paweł Kostyła & Jarosław Szymańda & Przemysław Janik, 2021. "Clustering Methods for Power Quality Measurements in Virtual Power Plant," Energies, MDPI, vol. 14(18), pages 1-20, September.
    6. Rongsheng Liu & Minfang Peng & Xianghui Xiao, 2018. "Ultra-Short-Term Wind Power Prediction Based on Multivariate Phase Space Reconstruction and Multivariate Linear Regression," Energies, MDPI, vol. 11(10), pages 1-17, October.
    7. Maria Grazia De Giorgi & Stefano Campilongo & Antonio Ficarella & Paolo Maria Congedo, 2014. "Comparison Between Wind Power Prediction Models Based on Wavelet Decomposition with Least-Squares Support Vector Machine (LS-SVM) and Artificial Neural Network (ANN)," Energies, MDPI, vol. 7(8), pages 1-22, August.
    8. Emilio Gómez-Lázaro & María C. Bueso & Mathieu Kessler & Sergio Martín-Martínez & Jie Zhang & Bri-Mathias Hodge & Angel Molina-García, 2016. "Probability Density Function Characterization for Aggregated Large-Scale Wind Power Based on Weibull Mixtures," Energies, MDPI, vol. 9(2), pages 1-15, February.
    9. Xiaogang Wu & Wenwen Shi & Jiuyu Du, 2017. "Multi-Objective Optimal Charging Method for Lithium-Ion Batteries," Energies, MDPI, vol. 10(9), pages 1-18, August.
    10. Wang, Zhiwen & Shen, Chen & Liu, Feng, 2018. "A conditional model of wind power forecast errors and its application in scenario generation," Applied Energy, Elsevier, vol. 212(C), pages 771-785.
    11. Luis Hernández & Carlos Baladrón & Javier M. Aguiar & Belén Carro & Antonio Sánchez-Esguevillas, 2012. "Classification and Clustering of Electricity Demand Patterns in Industrial Parks," Energies, MDPI, vol. 5(12), pages 1-14, December.
    12. Yonggang Li & Yue Wang & Binyuan Wu, 2020. "Short-Term Direct Probability Prediction Model of Wind Power Based on Improved Natural Gradient Boosting," Energies, MDPI, vol. 13(18), pages 1-15, September.
    13. Wang, Jianzhou & Hu, Jianming & Ma, Kailiang & Zhang, Yixin, 2015. "A self-adaptive hybrid approach for wind speed forecasting," Renewable Energy, Elsevier, vol. 78(C), pages 374-385.
    14. Bishnu Nepal & Motoi Yamaha & Hiroya Sahashi & Aya Yokoe, 2019. "Analysis of Building Electricity Use Pattern Using K-Means Clustering Algorithm by Determination of Better Initial Centroids and Number of Clusters," Energies, MDPI, vol. 12(12), pages 1-17, June.
    15. Dong, Weichao & Sun, Hexu & Tan, Jianxin & Li, Zheng & Zhang, Jingxuan & Yang, Huifang, 2022. "Regional wind power probabilistic forecasting based on an improved kernel density estimation, regular vine copulas, and ensemble learning," Energy, Elsevier, vol. 238(PC).
    16. Qian Zhang & Kin Keung Lai & Dongxiao Niu & Qiang Wang & Xuebin Zhang, 2012. "A Fuzzy Group Forecasting Model Based on Least Squares Support Vector Machine (LS-SVM) for Short-Term Wind Power," Energies, MDPI, vol. 5(9), pages 1-18, September.
    17. Alasmer Ibrahim & Fatih Anayi & Michael Packianather & Osama Ahmad Alomari, 2022. "New Hybrid Invasive Weed Optimization and Machine Learning Approach for Fault Detection," Energies, MDPI, vol. 15(4), pages 1-24, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lingling Li & Jiarui Pei & Qiang Shen, 2023. "A Review of Research on Dynamic and Static Economic Dispatching of Hybrid Wind–Thermal Power Microgrids," Energies, MDPI, vol. 16(10), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Yongning & Ye, Lin & Li, Zhi & Song, Xuri & Lang, Yansheng & Su, Jian, 2016. "A novel bidirectional mechanism based on time series model for wind power forecasting," Applied Energy, Elsevier, vol. 177(C), pages 793-803.
    2. Tansu Filik, 2016. "Improved Spatio-Temporal Linear Models for Very Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 9(3), pages 1-15, March.
    3. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    4. Jonkers, Jef & Avendano, Diego Nieves & Van Wallendael, Glenn & Van Hoecke, Sofie, 2024. "A novel day-ahead regional and probabilistic wind power forecasting framework using deep CNNs and conformalized regression forests," Applied Energy, Elsevier, vol. 361(C).
    5. Hu, Jianming & Heng, Jiani & Wen, Jiemei & Zhao, Weigang, 2020. "Deterministic and probabilistic wind speed forecasting with de-noising-reconstruction strategy and quantile regression based algorithm," Renewable Energy, Elsevier, vol. 162(C), pages 1208-1226.
    6. Croonenbroeck, Carsten & Stadtmann, Georg, 2019. "Renewable generation forecast studies – Review and good practice guidance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 312-322.
    7. Qian, Zheng & Pei, Yan & Zareipour, Hamidreza & Chen, Niya, 2019. "A review and discussion of decomposition-based hybrid models for wind energy forecasting applications," Applied Energy, Elsevier, vol. 235(C), pages 939-953.
    8. Lahouar, A. & Ben Hadj Slama, J., 2017. "Hour-ahead wind power forecast based on random forests," Renewable Energy, Elsevier, vol. 109(C), pages 529-541.
    9. Sharifzadeh, Mahdi & Sikinioti-Lock, Alexandra & Shah, Nilay, 2019. "Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 513-538.
    10. Lilin Cheng & Haixiang Zang & Tao Ding & Rong Sun & Miaomiao Wang & Zhinong Wei & Guoqiang Sun, 2018. "Ensemble Recurrent Neural Network Based Probabilistic Wind Speed Forecasting Approach," Energies, MDPI, vol. 11(8), pages 1-23, July.
    11. Tawn, R. & Browell, J., 2022. "A review of very short-term wind and solar power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    12. Yıldıran, Uğur & Kayahan, İsmail, 2018. "Risk-averse stochastic model predictive control-based real-time operation method for a wind energy generation system supported by a pumped hydro storage unit," Applied Energy, Elsevier, vol. 226(C), pages 631-643.
    13. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    14. Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    15. Kim, Deockho & Hur, Jin, 2018. "Short-term probabilistic forecasting of wind energy resources using the enhanced ensemble method," Energy, Elsevier, vol. 157(C), pages 211-226.
    16. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & Pep Salas & José Matas, 2020. "A Comprehensive Model for the Design of a Microgrid under Regulatory Constraints Using Synthetical Data Generation and Stochastic Optimization," Energies, MDPI, vol. 13(21), pages 1-26, October.
    17. Costa, Marcelo Azevedo & Ruiz-Cárdenas, Ramiro & Mineti, Leandro Brioschi & Prates, Marcos Oliveira, 2021. "Dynamic time scan forecasting for multi-step wind speed prediction," Renewable Energy, Elsevier, vol. 177(C), pages 584-595.
    18. Yagang Zhang & Jingyun Yang & Kangcheng Wang & Zengping Wang, 2015. "Wind Power Prediction Considering Nonlinear Atmospheric Disturbances," Energies, MDPI, vol. 8(1), pages 1-15, January.
    19. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    20. Wang, Jianzhou & Du, Pei & Niu, Tong & Yang, Wendong, 2017. "A novel hybrid system based on a new proposed algorithm—Multi-Objective Whale Optimization Algorithm for wind speed forecasting," Applied Energy, Elsevier, vol. 208(C), pages 344-360.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2462-:d:780772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.