IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3257-d1116499.html
   My bibliography  Save this article

Chemical Elements Content and Distributions within Different Tissue Types of White Spruce

Author

Listed:
  • Cyriac S. Mvolo

    (Natural Resources Canada, Canadian Forest Service, Canadian Wood Fibre Centre, Edmonton, AB T6H 3S5, Canada
    Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue, 445 Boulevard, de l’Université, Rouyn-Noranda, QC J9X 5E4, Canada)

  • Emmanuel A. Boakye

    (Faculté des Sciences, Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada)

  • Ahmed Koubaa

    (Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue, 445 Boulevard, de l’Université, Rouyn-Noranda, QC J9X 5E4, Canada)

Abstract

The relative proportions of different chemical components in wood tissues is one of the underlying factors that control wood properties. These proportions vary within and between woody tissues, and an accurate description of these variations is critical for parameterizing forest biogeochemical budgets and models. White spruce ( Picea glauca (Moench) Voss) spacing intensities trials in the Petawawa Research Forest, Ontario, Canada, were sampled to evaluate variations in carbon (C), nitrogen (N), and hydrogen (H) concentrations between different tissue types, i.e., bark, cambium, knots, earlywood, latewood, and wood. Samples were freeze-dried and oven-dried to test the impact of the drying methods on these chemical elements. Freeze-dried C (51.14) and H (6.18) concentrations were significantly higher than those of oven-dried C (50.55) and H (6.06). Freeze-dried N (0.18) did not differ from oven-dried N (0.17). The spacing intensities impacted C, H, and N, with C content being higher in wider square spacings (4.3 m and 6.1 m), while the reverse was true for N and H, which exhibited higher content in smaller square spacings (1.2 m and 1.8 m). The results of this study also suggested that when it comes to the content of chemical elements, bark and knots should be treated as separate fuel types, whereas other woody tissues can be aggregated.

Suggested Citation

  • Cyriac S. Mvolo & Emmanuel A. Boakye & Ahmed Koubaa, 2023. "Chemical Elements Content and Distributions within Different Tissue Types of White Spruce," Energies, MDPI, vol. 16(7), pages 1-14, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3257-:d:1116499
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3257/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3257/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jakob Skovgaard & Sofía Sacks Ferrari & Åsa Knaggård, 2019. "Mapping and clustering the adoption of carbon pricing policies: what polities price carbon and why?," Climate Policy, Taylor & Francis Journals, vol. 19(9), pages 1173-1185, October.
    2. Erol, M. & Haykiri-Acma, H. & Küçükbayrak, S., 2010. "Calorific value estimation of biomass from their proximate analyses data," Renewable Energy, Elsevier, vol. 35(1), pages 170-173.
    3. Cyriac S. Mvolo & James D. Stewart & Christopher Helmeste & Ahmed Koubaa, 2021. "Variation of White Spruce Carbon Content with Age, Height, Social Classes and Silvicultural Management," Energies, MDPI, vol. 14(23), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cyriac S. Mvolo & James D. Stewart & Christopher Helmeste & Ahmed Koubaa, 2021. "Variation of White Spruce Carbon Content with Age, Height, Social Classes and Silvicultural Management," Energies, MDPI, vol. 14(23), pages 1-13, December.
    2. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    3. Easwaran Narassimhan & Stefan Koester & Kelly Sims Gallagher, 2022. "Carbon Pricing in the US: Examining State-Level Policy Support and Federal Resistance," Politics and Governance, Cogitatio Press, vol. 10(1), pages 275-289.
    4. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    5. Best, Rohan & Zhang, Qiu Yue, 2020. "What explains carbon-pricing variation between countries?," Energy Policy, Elsevier, vol. 143(C).
    6. Paola D'Orazio, 2022. "Mapping the emergence and diffusion of climate-related financial policies: Evidence from a cluster analysis on G20 countries," International Economics, CEPII research center, issue 169, pages 135-147.
    7. Martin Rabbia, 2023. "Why did Argentina and Uruguay decide to pursue a carbon tax? Fiscal reforms and explicit carbon prices," Review of Policy Research, Policy Studies Organization, vol. 40(2), pages 230-259, March.
    8. Nahar, Gaurav & Rajput, Shailendrasingh & Grasham, Oliver & Dalvi, Vishwanath Haily & Dupont, Valerie & Ross, Andrew B. & Pandit, Aniruddha B., 2022. "Technoeconomic analysis of biogas production using simple and effective mechanistic model calibrated with biomethanation potential experiments of water lettuce (pistia stratiotes) inoculated by buffal," Energy, Elsevier, vol. 244(PB).
    9. Saidur, R. & Atabani, A.E. & Mekhilef, S., 2011. "A review on electrical and thermal energy for industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2073-2086, May.
    10. Jonas Meckling & Clara Galeazzi & Esther Shears & Tong Xu & Laura Diaz Anadon, 2022. "Energy innovation funding and institutions in major economies," Nature Energy, Nature, vol. 7(9), pages 876-885, September.
    11. Ping Wang & Bret H. Howard, 2017. "Impact of Thermal Pretreatment Temperatures on Woody Biomass Chemical Composition, Physical Properties and Microstructure," Energies, MDPI, vol. 11(1), pages 1-20, December.
    12. Bilandzija, Nikola & Voca, Neven & Jelcic, Barbara & Jurisic, Vanja & Matin, Ana & Grubor, Mateja & Kricka, Tajana, 2018. "Evaluation of Croatian agricultural solid biomass energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 225-230.
    13. Jochen Markard & Daniel Rosenbloom, 2020. "Politics of low-carbon transitions: The European Emissions Trading System as a Trojan Horse for climate policy?," Working Papers on Innovation Studies 20200116, Centre for Technology, Innovation and Culture, University of Oslo.
    14. Živilė Černiauskienė & Algirdas Jonas Raila & Egidijus Zvicevičius & Vita Tilvikienė & Zofija Jankauskienė, 2021. "Comparative Research of Thermochemical Conversion Properties of Coarse-Energy Crops," Energies, MDPI, vol. 14(19), pages 1-15, October.
    15. Ido, Alexander L. & de Luna, Mark Daniel G. & Capareda, Sergio C. & Maglinao, Amado L. & Nam, Hyungseok, 2018. "Application of central composite design in the optimization of lipid yield from Scenedesmus obliquus microalgae by ultrasound-assisted solvent extraction," Energy, Elsevier, vol. 157(C), pages 949-956.
    16. Vít Pászto & Jarmila Zimmermannová & Jolana Skaličková & Judit Sági, 2020. "Spatial Patterns in Fiscal Impacts of Environmental Taxation in the EU," Economies, MDPI, vol. 8(4), pages 1-18, November.
    17. Alberto Gianoli & Felipe Bravo, 2020. "Carbon Tax, Carbon Leakage and the Theory of Induced Innovation in the Decarbonisation of Industrial Processes: The Case of the Port of Rotterdam," Sustainability, MDPI, vol. 12(18), pages 1-23, September.
    18. Velázquez-Martí, B. & Sajdak, M. & López-Cortés, I. & Callejón-Ferre, A.J., 2014. "Wood characterization for energy application proceeding from pruning Morus alba L., Platanus hispanica Münchh. and Sophora japonica L. in urban areas," Renewable Energy, Elsevier, vol. 62(C), pages 478-483.
    19. Justyna Kujawska & Monika Kulisz & Piotr Oleszczuk & Wojciech Cel, 2023. "Improved Prediction of the Higher Heating Value of Biomass Using an Artificial Neural Network Model Based on the Selection of Input Parameters," Energies, MDPI, vol. 16(10), pages 1-16, May.
    20. Małgorzata Sieradzka & Ningbo Gao & Cui Quan & Agata Mlonka-Mędrala & Aneta Magdziarz, 2020. "Biomass Thermochemical Conversion via Pyrolysis with Integrated CO 2 Capture," Energies, MDPI, vol. 13(5), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3257-:d:1116499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.