IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3228-d1115094.html
   My bibliography  Save this article

The Lithium-Ion Battery Recycling Process from a Circular Economy Perspective—A Review and Future Directions

Author

Listed:
  • Rahil Parag Sheth

    (Birla Institute of Technology and Science, Pilani 333031, India)

  • Narendra Singh Ranawat

    (Operations Management, Rajasthan Technical University, Kota 324010, India)

  • Ayon Chakraborty

    (Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia)

  • Rajesh Prasad Mishra

    (Birla Institute of Technology and Science, Pilani 333031, India)

  • Manoj Khandelwal

    (Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia)

Abstract

Ever since the introduction of lithium-ion batteries (LIBs) in the 1970s, their demand has increased exponentially with their applications in electric vehicles, smartphones, and energy storage systems. To cope with the increase in demand and the ensuing environmental effects of excessive mining activities and waste production, it becomes crucial to explore ways of manufacturing LIBs from the resources that have already been extracted from nature. It is possible by promoting the re-usage, refurbishing, and recycling of the batteries and their constituent components, rethinking the fundamental design of devices using these batteries, and introducing the circular economy model in the battery industry. This paper through a literature review provides the current state of CE adoption in the lithium-ion battery industry. The review suggests that the focus is mostly on recycling at this moment in the battery industry, and a further understanding of the process is needed to better adapt to other CE practices such as reuse, remanufacture, refurbishment, etc. The paper also provides the steps involved in the recycling process and, through secondary case studies, shows how some of the industries are currently approaching battery recycling. Thus, this paper, through review and secondary cases, helps us to understand the current state of LIB recycling and CE adoption.

Suggested Citation

  • Rahil Parag Sheth & Narendra Singh Ranawat & Ayon Chakraborty & Rajesh Prasad Mishra & Manoj Khandelwal, 2023. "The Lithium-Ion Battery Recycling Process from a Circular Economy Perspective—A Review and Future Directions," Energies, MDPI, vol. 16(7), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3228-:d:1115094
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3228/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3228/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anna Pražanová & Vaclav Knap & Daniel-Ioan Stroe, 2022. "Literature Review, Recycling of Lithium-Ion Batteries from Electric Vehicles, Part II: Environmental and Economic Perspective," Energies, MDPI, vol. 15(19), pages 1-44, October.
    2. Foad H. Gandoman & Emad M. Ahmed & Ziad M. Ali & Maitane Berecibar & Ahmed F. Zobaa & Shady H. E. Abdel Aleem, 2021. "Reliability Evaluation of Lithium-Ion Batteries for E-Mobility Applications from Practical and Technical Perspectives: A Case Study," Sustainability, MDPI, vol. 13(21), pages 1-24, October.
    3. Kannan Govindan & Mia Hasanagic, 2018. "A systematic review on drivers, barriers, and practices towards circular economy: a supply chain perspective," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 278-311, January.
    4. Kirti Richa & Callie W. Babbitt & Gabrielle Gaustad, 2017. "Eco-Efficiency Analysis of a Lithium-Ion Battery Waste Hierarchy Inspired by Circular Economy," Journal of Industrial Ecology, Yale University, vol. 21(3), pages 715-730, June.
    5. Anna Pražanová & Vaclav Knap & Daniel-Ioan Stroe, 2022. "Literature Review, Recycling of Lithium-Ion Batteries from Electric Vehicles, Part I: Recycling Technology," Energies, MDPI, vol. 15(3), pages 1-29, February.
    6. Ibrahim, H. & Ilinca, A. & Perron, J., 2008. "Energy storage systems--Characteristics and comparisons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1221-1250, June.
    7. Invernizzi, Diletta Colette & Locatelli, Giorgio & Velenturf, Anne & Love, Peter ED. & Purnell, Phil & Brookes, Naomi J., 2020. "Developing policies for the end-of-life of energy infrastructure: Coming to terms with the challenges of decommissioning," Energy Policy, Elsevier, vol. 144(C).
    8. Zhu, Mengping & Liu, Zhixue & Li, Jianbin & Zhu, Stuart X., 2020. "Electric vehicle battery capacity allocation and recycling with downstream competition," European Journal of Operational Research, Elsevier, vol. 283(1), pages 365-379.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hasan Huseyin Coban, 2023. "Hydropower Planning in Combination with Batteries and Solar Energy," Sustainability, MDPI, vol. 15(13), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Symeonidou & Agis M. Papadopoulos, 2022. "Selection and Dimensioning of Energy Storage Systems for Standalone Communities: A Review," Energies, MDPI, vol. 15(22), pages 1-28, November.
    2. Armaghan Chizaryfard & Cali Nuur & Paolo Trucco, 2022. "Managing Structural Tensions in the Transition to the Circular Economy: the Case of Electric Vehicle Batteries," Circular Economy and Sustainability, Springer, vol. 2(3), pages 1157-1185, September.
    3. Vongdala Noudeng & Nguyen Van Quan & Tran Dang Xuan, 2022. "A Future Perspective on Waste Management of Lithium-Ion Batteries for Electric Vehicles in Lao PDR: Current Status and Challenges," IJERPH, MDPI, vol. 19(23), pages 1-22, December.
    4. Rohit Agrawal & Vishal A. Wankhede & Anil Kumar & Sunil Luthra, 2021. "Analysing the roadblocks of circular economy adoption in the automobile sector: Reducing waste and environmental perspectives," Business Strategy and the Environment, Wiley Blackwell, vol. 30(2), pages 1051-1066, February.
    5. Emilia Vann Yaroson & Soumyadeb Chowdhury & Sachin Kumar Mangla & Prasanta Kumar Dey, 2024. "Unearthing the interplay between organisational resources, knowledge and industry 4.0 analytical decision support tools to achieve sustainability and supply chain wellbeing," Annals of Operations Research, Springer, vol. 342(2), pages 1321-1368, November.
    6. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    7. German Arana‐Landin & Waleska Sigüenza & Beñat Landeta‐Manzano & Iker Laskurain‐Iturbe, 2024. "Circular economy: On the road to ISO 59000 family of standards," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 31(3), pages 1977-2009, May.
    8. Karellas, S. & Tzouganatos, N., 2014. "Comparison of the performance of compressed-air and hydrogen energy storage systems: Karpathos island case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 865-882.
    9. Ardizzon, G. & Cavazzini, G. & Pavesi, G., 2014. "A new generation of small hydro and pumped-hydro power plants: Advances and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 746-761.
    10. Shuang Rong & Weixing Li & Zhimin Li & Yong Sun & Taiyi Zheng, 2015. "Optimal Allocation of Thermal-Electric Decoupling Systems Based on the National Economy by an Improved Conjugate Gradient Method," Energies, MDPI, vol. 9(1), pages 1-21, December.
    11. Nikita V. Martyushev & Boris V. Malozyomov & Svetlana N. Sorokova & Egor A. Efremenkov & Denis V. Valuev & Mengxu Qi, 2023. "Review Models and Methods for Determining and Predicting the Reliability of Technical Systems and Transport," Mathematics, MDPI, vol. 11(15), pages 1-31, July.
    12. Katla, Daria & Bartela, Łukasz & Skorek-Osikowska, Anna, 2020. "Evaluation of electricity generation subsystem of power-to-gas-to-power unit using gas expander and heat recovery steam generator," Energy, Elsevier, vol. 212(C).
    13. Patricia van Loon & Luk N. Van Wassenhove & Ales Mihelic, 2022. "Designing a circular business strategy: 7 years of evolution at a large washing machine manufacturer," Business Strategy and the Environment, Wiley Blackwell, vol. 31(3), pages 1030-1041, March.
    14. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    15. Mehrabankhomartash, Mahmoud & Rayati, Mohammad & Sheikhi, Aras & Ranjbar, Ali Mohammad, 2017. "Practical battery size optimization of a PV system by considering individual customer damage function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 36-50.
    16. Toledo, Olga Moraes & Oliveira Filho, Delly & Diniz, Antônia Sônia Alves Cardoso, 2010. "Distributed photovoltaic generation and energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 506-511, January.
    17. Zhang, Abraham & Wang, Jason X. & Farooque, Muhammad & Wang, Yulan & Choi, Tsan-Ming, 2021. "Multi-dimensional circular supply chain management: A comparative review of the state-of-the-art practices and research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    18. Rabiee, Abdorreza & Khorramdel, Hossein & Aghaei, Jamshid, 2013. "A review of energy storage systems in microgrids with wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 316-326.
    19. Mutu Tantrige Osada Vishvajith Peiris & Gileemalege Lalithri Navodya Dayarathne, 2023. "Application of Life Cycle Framework for Municipal Solid Waste Management: a Circular Economy Perspective from Developing Countries," Circular Economy and Sustainability, Springer, vol. 3(2), pages 899-918, June.
    20. Jose García‐Quevedo & Elisenda Jové‐Llopis & Ester Martínez‐Ros, 2020. "Barriers to the circular economy in European small and medium‐sized firms," Business Strategy and the Environment, Wiley Blackwell, vol. 29(6), pages 2450-2464, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3228-:d:1115094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.