IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3213-d1114497.html
   My bibliography  Save this article

The Effect of Boost Coil and Alignment of Transmitting and Receiving Coils on Transmission Efficiency in EV Wireless Power Transfer Systems

Author

Listed:
  • Young-Kuk Choi

    (Optical Precision Measurement Research Center, Korea Photonics Technology Institute, Gwangju 61007, Republic of Korea
    Department of Electrical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea)

  • Don-Jung Lee

    (Optical Precision Measurement Research Center, Korea Photonics Technology Institute, Gwangju 61007, Republic of Korea)

  • Sung-Jun Park

    (Department of Electrical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea)

Abstract

As the electric vehicle (EV) market continues to grow, wireless charging technologies are constantly evolving. Considering the limitations of traditional charging methods, the adoption of wireless charging technology is an essential strategy, and the distribution of wireless charging systems is expected to accelerate in the global market with initiatives such as international standards for wireless charging systems. With regard to this technological trend, this study experimentally analyzed the effects of the boost coil and the alignment of the transmitting and receiving coils on the transmission efficiency in wireless power transfer systems. The boost coil amplifies the magnetic field using a high-frequency signal and transfers the field to the receiving coil. Moreover, simulations were conducted based on the theory that using the boost coil could increase the efficiency of wireless power transfer, and the impact of the alignment between the transmitting and receiving coils on the transmission efficiency was also analyzed.

Suggested Citation

  • Young-Kuk Choi & Don-Jung Lee & Sung-Jun Park, 2023. "The Effect of Boost Coil and Alignment of Transmitting and Receiving Coils on Transmission Efficiency in EV Wireless Power Transfer Systems," Energies, MDPI, vol. 16(7), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3213-:d:1114497
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3213/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3213/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haidong Sun & Cheng Liu & Hao Zhang & Yanming Cheng & Yongyin Qu, 2021. "Research on a Self-Coupling PID Control Strategy for a ZVS Phase-Shift Full-Bridge Converter," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-9, March.
    2. Luigi Fortuna & Arturo Buscarino, 2022. "Nonlinear Technologies in Advanced Power Systems: Analysis and Control," Energies, MDPI, vol. 15(14), pages 1-4, July.
    3. Adel El-Shahat & Joshua Danjuma & Almoataz Y. Abdelaziz & Shady H. E. Abdel Aleem, 2022. "Human Exposure Influence Analysis for Wireless Electric Vehicle Battery Charging," Clean Technol., MDPI, vol. 4(3), pages 1-21, August.
    4. Alicia Triviño & José M. González-González & José A. Aguado, 2021. "Wireless Power Transfer Technologies Applied to Electric Vehicles: A Review," Energies, MDPI, vol. 14(6), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed H. EL-Ebiary & Mohamed Mokhtar & Atef M. Mansour & Fathy H. Awad & Mostafa I. Marei & Mahmoud A. Attia, 2022. "Distributed Mitigation Layers for Voltages and Currents Cyber-Attacks on DC Microgrids Interfacing Converters," Energies, MDPI, vol. 15(24), pages 1-32, December.
    2. Massimo Ceraolo & Valentina Consolo & Mauro Di Monaco & Giovanni Lutzemberger & Antonino Musolino & Rocco Rizzo & Giuseppe Tomasso, 2021. "Design and Realization of an Inductive Power Transfer for Shuttles in Automated Warehouses," Energies, MDPI, vol. 14(18), pages 1-20, September.
    3. Konstantina Dimitriadou & Nick Rigogiannis & Symeon Fountoukidis & Faidra Kotarela & Anastasios Kyritsis & Nick Papanikolaou, 2023. "Current Trends in Electric Vehicle Charging Infrastructure; Opportunities and Challenges in Wireless Charging Integration," Energies, MDPI, vol. 16(4), pages 1-28, February.
    4. Cédric Lecluyse & Ben Minnaert & Michael Kleemann, 2021. "A Review of the Current State of Technology of Capacitive Wireless Power Transfer," Energies, MDPI, vol. 14(18), pages 1-22, September.
    5. Geetha Palani & Usha Sengamalai & Pradeep Vishnuram & Benedetto Nastasi, 2023. "Challenges and Barriers of Wireless Charging Technologies for Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-47, February.
    6. Grzegorz Karoń, 2022. "Safe and Effective Smart Urban Transportation—Energy Flow in Electric (EV) and Hybrid Electric Vehicles (HEV)," Energies, MDPI, vol. 15(18), pages 1-8, September.
    7. Amjad, Muhammad & Farooq-i-Azam, Muhammad & Ni, Qiang & Dong, Mianxiong & Ansari, Ejaz Ahmad, 2022. "Wireless charging systems for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Nikolay Madzharov & Nikolay Hinov, 2021. "High-Performance Power Converter for Charging Electric Vehicles," Energies, MDPI, vol. 14(24), pages 1-15, December.
    9. Yuchen Wang & Adeela Gulzari & Victor Prybutok, 2023. "Individual Characteristics as Motivators of Sustainable Behavior in Electronic Vehicle Rental," Clean Technol., MDPI, vol. 6(1), pages 1-14, December.
    10. Pramote Jaruwatanachai & Yod Sukamongkol & Taweesak Samanchuen, 2023. "Predicting and Managing EV Charging Demand on Electrical Grids: A Simulation-Based Approach," Energies, MDPI, vol. 16(8), pages 1-22, April.
    11. Kai Song & Yu Lan & Xian Zhang & Jinhai Jiang & Chuanyu Sun & Guang Yang & Fengshuo Yang & Hao Lan, 2023. "A Review on Interoperability of Wireless Charging Systems for Electric Vehicles," Energies, MDPI, vol. 16(4), pages 1-22, February.
    12. Emin Yildiriz & Murat Bayraktar, 2022. "Design and Implementation of a Wireless Charging System Connected to the AC Grid for an E-Bike," Energies, MDPI, vol. 15(12), pages 1-15, June.
    13. Surender Reddy Salkuti, 2023. "Advanced Technologies for Energy Storage and Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-7, February.
    14. Yuyu Geng & Tao Wang & Shiyun Xie & Yi Yang, 2022. "Analysis and Design of Wireless Power Transfer Systems Applied to Electrical Vehicle Supercapacitor Charge Using Variable-Resistance-Based Method," Energies, MDPI, vol. 15(16), pages 1-15, August.
    15. Emilia M. Szumska & Rafał Jurecki, 2022. "The Analysis of Energy Recovered during the Braking of an Electric Vehicle in Different Driving Conditions," Energies, MDPI, vol. 15(24), pages 1-16, December.
    16. Aziz Rachid & Hassan El Fadil & Khawla Gaouzi & Kamal Rachid & Abdellah Lassioui & Zakariae El Idrissi & Mohamed Koundi, 2022. "Electric Vehicle Charging Systems: Comprehensive Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
    17. Yuan Li & Shumei Zhang & Ze Cheng, 2021. "Double-Coil Dynamic Shielding Technology for Wireless Power Transmission in Electric Vehicles," Energies, MDPI, vol. 14(17), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3213-:d:1114497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.