Different Prevention Effects of Ventilation Dilution on Methane Accumulation at High Temperature Zone in Coal Mine Goafs
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Li, Lin & Qin, Botao & Liu, Jishan & Leong, Yee-Kwong, 2020. "Integrated experimentation and modeling of the formation processes underlying coal combustion-triggered methane explosions in a mined-out area," Energy, Elsevier, vol. 203(C).
- Deng, Jun & Yang, Yi & Zhang, Yan-Ni & Liu, Bo & Shu, Chi-Min, 2018. "Inhibiting effects of three commercial inhibitors in spontaneous coal combustion," Energy, Elsevier, vol. 160(C), pages 1174-1185.
- Magdalena Tutak & Jarosław Brodny, 2018. "Analysis of the Impact of Auxiliary Ventilation Equipment on the Distribution and Concentration of Methane in the Tailgate," Energies, MDPI, vol. 11(11), pages 1-28, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yutao, Zhang & Yuanbo, Zhang & Yaqing, Li & Xueqiang, Shi & Yujie, Zhang, 2021. "Heat effects and kinetics of coal spontaneous combustion at various oxygen contents," Energy, Elsevier, vol. 234(C).
- Yan, Hongwei & Nie, Baisheng & Kong, Fanbei & Liu, Yuze & Liu, Peijun & Wang, Yongjing & Chen, Zongyu & Yin, Feifei & Gong, Jie & Lin, Shuangshuang & Wang, Xiaotong & Hou, Yanan, 2023. "Experimental investigation of coal particle size on the kinetic properties of coal oxidation and spontaneous combustion limit parameters," Energy, Elsevier, vol. 270(C).
- Li, Jinhu & Li, Zenghua & Yang, Yongliang & Duan, Yujian & Xu, Jun & Gao, Ruiting, 2019. "Examination of CO, CO2 and active sites formation during isothermal pyrolysis of coal at low temperatures," Energy, Elsevier, vol. 185(C), pages 28-38.
- Wenbing Guo & Mingjie Guo & Yi Tan & Erhu Bai & Gaobo Zhao, 2019. "Sustainable Development of Resources and the Environment: Mining-Induced Eco-Geological Environmental Damage and Mitigation Measures—A Case Study in the Henan Coal Mining Area, China," Sustainability, MDPI, vol. 11(16), pages 1-34, August.
- Torgrim Log & Wegar Bjerkeli Pedersen, 2019. "A Common Risk Classification Concept for Safety Related Gas Leaks and Fugitive Emissions?," Energies, MDPI, vol. 12(21), pages 1-17, October.
- Shuicheng Tian & Junrui Mao & Hongxia Li, 2022. "Disaster-Causing Mechanism of Hidden Disaster-Causing Factors of Major and Extraordinarily Serious Gas Explosion Accidents in Coal Mine Goafs," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
- Lu, Wei & Gao, Ao & Sun, Weili & Liang, Yuntao & He, Zhenglong & Li, Jinliang & Sun, Yong & Song, Shuanglin & Meng, Shaocong & Cao, Yingjiazi, 2022. "Experimental study on inhibition of spontaneous combustion of different-rank coals by high-performance m-Cresol water-based inhibitor solutions," Energy, Elsevier, vol. 261(PA).
- Zhai, Xiaowei & Ge, Hui & Wang, Tingyan & Shu, Chi-Min & Li, Jun, 2020. "Effect of water immersion on active functional groups and characteristic temperatures of bituminous coal," Energy, Elsevier, vol. 205(C).
- Jiang, Haipeng & Bi, Mingshu & Huang, Lei & Zhou, Yonghao & Gao, Wei, 2022. "Suppression mechanism of ultrafine water mist containing phosphorus compounds in methane/coal dust explosions," Energy, Elsevier, vol. 239(PA).
- Pan, Rongkun & Li, Cong & Chao, Jiangkun & Hu, Daimin & Jia, Hailin, 2023. "Thermal properties and microstructural evolution of coal spontaneous combustion," Energy, Elsevier, vol. 262(PA).
- Li, Min & Yang, Xueqin & Lu, Yi & Wang, Deming & Shi, Shiliang & Ye, Qing & Li, He & Wang, Zheng, 2023. "Thermodynamic variation law and influence mechanism of low-temperature oxidation of lignite samples with different moisture contents," Energy, Elsevier, vol. 262(PB).
- Dai, Huaming & Yin, Hepeng & Zhai, Cheng, 2022. "Experimental investigation on the inhibition of coal dust deflagration by the composite inhibitor of floating bead and melamine cyanurate," Energy, Elsevier, vol. 261(PA).
- Guo, Shengli & Yan, Zhuo & Yuan, Shujie & Weile Geng,, 2021. "Inhibitory effect and mechanism of l-ascorbic acid combined with tea polyphenols on coal spontaneous combustion," Energy, Elsevier, vol. 229(C).
- Lv, Hongpeng & Li, Bei & Deng, Jun & Ye, Lili & Gao, Wei & Shu, Chi-Min & Bi, Mingshu, 2021. "A novel methodology for evaluating the inhibitory effect of chloride salts on the ignition risk of coal spontaneous combustion," Energy, Elsevier, vol. 231(C).
- Jiaqi Hu & Rui Huang & Fangting Xu, 2022. "Data Mining in Coal-Mine Gas Explosion Accidents Based on Evidence-Based Safety: A Case Study in China," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
- Xue, Di & Hu, Xiangming & Cheng, Weimin & Yu, Xiaoxiao & Wu, Mingyue & Zhao, Yanyun & Lu, Yi & Pan, Rongkun & Niu, Huiyong & Hu, Shengyong, 2020. "Development of a novel composite inhibitor modified with proanthocyanidins and mixed with ammonium polyphosphate," Energy, Elsevier, vol. 213(C).
- Ye, Congliang & Zhang, Qi, 2022. "Chain explosion behaviors induced by discontinuous methane/air distribution," Energy, Elsevier, vol. 252(C).
- He, Yongjun & Deng, Jun & Yi, Xin & Xiao, Yang & Deng, Yin & Chen, Weile, 2023. "Effect of rare-earth-containing inhibitors on the low-temperature oxidation characteristics and thermodynamic properties of coal," Energy, Elsevier, vol. 281(C).
- Huiuk Yi & Minsik Kim & Dongkil Lee & Jongmyung Park, 2022. "Applications of Computational Fluid Dynamics for Mine Ventilation in Mineral Development," Energies, MDPI, vol. 15(22), pages 1-24, November.
- Dawid Szurgacz & Jarosław Brodny, 2019. "Tests of Geometry of the Powered Roof Support Section," Energies, MDPI, vol. 12(20), pages 1-19, October.
More about this item
Keywords
coal mine goafs; spontaneous coal combustion; ventilation dilution; three stages; methane explosions;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3168-:d:1113096. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.